In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms(1). Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only similar to 10 mu s between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 mu s. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.

Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton / Capitanio, M; Gardini, L; Pavone, Fs. - STAMPA. - 8946:(2014), pp. 89460K-89460K. (Intervento presentato al convegno Conference on Optical Elastography and Tissue Biomechanics tenutosi a San Francisco nel 1.02.2014) [10.1117/12.2039219].

Ultra-fast optical manipulation of single proteins binding to the actin cytoskeleton

CAPITANIO, MARCO;GARDINI, LUCIA;PAVONE, FRANCESCO SAVERIO
2014

Abstract

In the last decade, forces and mechanical stresses acting on biological systems are emerging as regulatory factors essential for cell life. Emerging evidences indicate that factors such as applied forces or the rigidity of the extracellular matrix (ECM) determine the shape and function of cells and organisms(1). Classically, the regulation of biological systems is described through a series of biochemical signals and enzymatic reactions, which direct the processes and cell fate. However, mechanotransduction, i.e. the conversion of mechanical forces into biochemical and biomolecular signals, is at the basis of many biological processes fundamental for the development and differentiation of cells, for their correct function and for the development of pathologies. We recently developed an in vitro system that allows the investigation of force-dependence of the interaction of proteins binding the actin cytoskeleton, at the single molecule level. Our system displays a delay of only similar to 10 mu s between formation of the molecular bond and application of the force and is capable of detecting interactions as short as 100 mu s. Our assay allows direct measurements of load-dependence of lifetimes of single molecular bonds and conformational changes of single proteins and molecular motors. We demonstrate our technique on molecular motors, using myosin II from fast skeletal muscle and on protein-DNA interaction, specifically on Lactose repressor (LacI). The apparatus is stabilized to less than 1 nm with both passive and active stabilization, allowing resolving specific binding regions along the actin filament and DNA molecule. Our technique extends single-molecule force-clamp spectroscopy to molecular complexes that have been inaccessible up to now, opening new perspectives for the investigation of the effects of forces on biological processes.
2014
Optical Elastography and Tissue BiomechanicsOptical Elastography and Tissue Biomechanics
Conference on Optical Elastography and Tissue Biomechanics
San Francisco
1.02.2014
Capitanio, M; Gardini, L; Pavone, Fs
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/872320
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact