In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference. In immature neurons, loss of Pum2 led to enhanced dendritic outgrowth and arborization. In mature neurons, Pum2 down-regulation resulted in a significant reduction in dendritic spines and an increase in elongated dendritic filopodia. Furthermore, we observed an increase in excitatory synapse markers along dendritic shafts. Electrophysiological analysis of synaptic function of neurons lacking Pum2 revealed an increased miniature excitatory postsynaptic current frequency. We then identified two specific mRNAs coding for a known translational regulator, eIF4E, and for a voltage-gated sodium channel, Scn1a, which interacts with Pum2 in immunoprecipitations from brain lysates. Finally, we show that Pum2 regulates translation of the eIF4E mRNA. Taken together, our data reveal a previously undescribed role for Pum2 in dendrite morphogenesis, synapse function, and translational control.

Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function / Vessey JP; Schoderboeck L; Gingl E; Luzi E; Riefler J; Di Leva F; Karra D; Thomas S; Kiebler MA; Macchi P.. - In: PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. - ISSN 1091-6490. - STAMPA. - 107:(2010), pp. 3222-3227.

Mammalian Pumilio 2 regulates dendrite morphogenesis and synaptic function.

LUZI, ETTORE;
2010

Abstract

In Drosophila, Pumilio (Pum) is important for neuronal homeostasis as well as learning and memory. We have recently characterized a mammalian homolog of Pum, Pum2, which is found in discrete RNA-containing particles in the somatodendritic compartment of polarized neurons. In this study, we investigated the role of Pum2 in developing and mature neurons by RNA interference. In immature neurons, loss of Pum2 led to enhanced dendritic outgrowth and arborization. In mature neurons, Pum2 down-regulation resulted in a significant reduction in dendritic spines and an increase in elongated dendritic filopodia. Furthermore, we observed an increase in excitatory synapse markers along dendritic shafts. Electrophysiological analysis of synaptic function of neurons lacking Pum2 revealed an increased miniature excitatory postsynaptic current frequency. We then identified two specific mRNAs coding for a known translational regulator, eIF4E, and for a voltage-gated sodium channel, Scn1a, which interacts with Pum2 in immunoprecipitations from brain lysates. Finally, we show that Pum2 regulates translation of the eIF4E mRNA. Taken together, our data reveal a previously undescribed role for Pum2 in dendrite morphogenesis, synapse function, and translational control.
2010
107
3222
3227
Vessey JP; Schoderboeck L; Gingl E; Luzi E; Riefler J; Di Leva F; Karra D; Thomas S; Kiebler MA; Macchi P.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/872766
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact