We provide an approximation result in the sense of $\Gamma$-convergence for energies of the form \[ \int_\Omega \Qq_1(e(u))\,dx+a\,\mathcal{H}^{n-1}(J_u)+b\,\int_{J_u}\Qq_0^{1/2}([u]\odot\nu_u)\,d\Hn, \] where $\Omega\subset\Rn$ is a bounded open set with Lipschitz boundary, $\Qq_0$ and $\Qq_1$ are coercive quadratic forms on $\Msym$, $a,\,b$ are positive constants, and $u$ runs in the space of fields $SBD^2(\Omega)$ , i.e., it's a special field with bounded deformation such that its symmetric gradient $e(u)$ is square integrable, and its jump set $J_u$ has finite $(n-1)$-Hausdorff measure in $\Rn$. The approximation is performed by means of Ambrosio-Tortorelli type elliptic regularizations, the prototype example being \[ \int_\Omega\Big(v|e(u)|^2+\frac{(1-v)^2}{\varepsilon}+{\cost\,\ve}|\nabla v|^2\Big)\,dx, \] where $(u,v)\in \Hu{\times} H^1(\Omega)$, $\ve\leq v\leq 1$ and $\gamma>0$.

Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity / Matteo Focardi; Flaviana Iurlano. - In: SIAM JOURNAL ON MATHEMATICAL ANALYSIS. - ISSN 0036-1410. - STAMPA. - 46:(2014), pp. 2936-2955. [10.1137/130947180]

Asymptotic analysis of Ambrosio-Tortorelli energies in linearized elasticity

FOCARDI, MATTEO;
2014

Abstract

We provide an approximation result in the sense of $\Gamma$-convergence for energies of the form \[ \int_\Omega \Qq_1(e(u))\,dx+a\,\mathcal{H}^{n-1}(J_u)+b\,\int_{J_u}\Qq_0^{1/2}([u]\odot\nu_u)\,d\Hn, \] where $\Omega\subset\Rn$ is a bounded open set with Lipschitz boundary, $\Qq_0$ and $\Qq_1$ are coercive quadratic forms on $\Msym$, $a,\,b$ are positive constants, and $u$ runs in the space of fields $SBD^2(\Omega)$ , i.e., it's a special field with bounded deformation such that its symmetric gradient $e(u)$ is square integrable, and its jump set $J_u$ has finite $(n-1)$-Hausdorff measure in $\Rn$. The approximation is performed by means of Ambrosio-Tortorelli type elliptic regularizations, the prototype example being \[ \int_\Omega\Big(v|e(u)|^2+\frac{(1-v)^2}{\varepsilon}+{\cost\,\ve}|\nabla v|^2\Big)\,dx, \] where $(u,v)\in \Hu{\times} H^1(\Omega)$, $\ve\leq v\leq 1$ and $\gamma>0$.
2014
46
2936
2955
Matteo Focardi; Flaviana Iurlano
File in questo prodotto:
File Dimensione Formato  
Focardi-Iurlano_SIMA.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 260.93 kB
Formato Adobe PDF
260.93 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/876725
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact