We experimentally demonstrate the possibility to engineer the confinement and the mutual interaction of modes in a two-dimensional disordered photonic structure. The strong light confinement is achieved at the fabrication stage by an optimization of the structure, and an accurate and local tuning of the mode resonance frequencies is achieved via post-fabrication processes. To show the versatility of our technique, we selectively control the detuning between overlapping localized modes and observe both frequency crossing and anti-crossing behaviours, thereby paving the way for the creation of open transmission channels in strongly scattering media.
Engineering of light confinement in strongly scattering disordered media / Francesco Riboli; Niccolò Caselli; Silvia Vignolini; Francesca Intonti; Kevin Vynck; Pierre Barthelemy; Annamaria Gerardino; Laurent Balet; Lian H. Li; Andrea Fiore; Massimo Gurioli; Diederik Wiersma. - In: NATURE MATERIALS. - ISSN 1476-1122. - STAMPA. - 13:(2014), pp. 720-725. [10.1038/nmat3966]
Engineering of light confinement in strongly scattering disordered media
RIBOLI, FRANCESCO;CASELLI, NICCOLO';VIGNOLINI, SILVIA;INTONTI, FRANCESCA;GURIOLI, MASSIMO;WIERSMA, DIEDERIK SYBOLT
2014
Abstract
We experimentally demonstrate the possibility to engineer the confinement and the mutual interaction of modes in a two-dimensional disordered photonic structure. The strong light confinement is achieved at the fabrication stage by an optimization of the structure, and an accurate and local tuning of the mode resonance frequencies is achieved via post-fabrication processes. To show the versatility of our technique, we selectively control the detuning between overlapping localized modes and observe both frequency crossing and anti-crossing behaviours, thereby paving the way for the creation of open transmission channels in strongly scattering media.File | Dimensione | Formato | |
---|---|---|---|
44_nature_materials_2014.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.1 MB
Formato
Adobe PDF
|
1.1 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.