We present a darkfield optical microspectroscopy technique devoted to the disentangled measurement of the absorption and scattering cross sections of nanoparticle (NP) samples with variable concentration. The robustness of the method, including the needed instrumental calibrations, is examined in detail by analyzing and quantifying the major sources of statistic and systematic errors. As an exemplary case, results are presented on a gold NP colloid. The technique takes advantage of a simple inverted microscope, coupled with a spectrograph and equipped with a darkfield condenser and a variable numerical aperture objective to obtain spectra either in darkfield or brightfield optical configurations. By adopting the Lambert-Beer (LB) equation modeling, we were able to disentangle and measure with a single setup the absorption, scattering, and extinction coefficients of the same sample by combining three spectra, obtained by opportunely varying the objective numerical aperture. Typical plasmonic resonances were recognized at approximately 520 and 750 nm. Optical coefficients were measured as a function of particle number density (0.04-3.94 mu m(-3), corresponding to 40 mu M-4 mM nominal Au concentration) and good linearity was verified up to approximate to 1.5 mu m(-3) (approximate to 1 mM Au). Moreover, extinction and scattering cross sections were quantified and the validity of the LB approximation was reviewed. Besides its applications to plasmonic NPs, this method may be appropriate for any colloid, provided there exists a characteristic spectral feature in the ultraviolet-visible-near infrared range. This technique may be exploited to localize NPs in biological samples.
A simple method to disentangle nanoparticle optical properties by darkfield microspectroscopy / Alessio Gnerucci;Fulvio Ratto;Sonia Centi;Antonio Conti;Roberto Pini;Franco Fusi;Giovanni Romano. - In: MICROSCOPY RESEARCH AND TECHNIQUE. - ISSN 1097-0029. - STAMPA. - 77:(2014), pp. 886-895. [10.1002/jemt.22411]
A simple method to disentangle nanoparticle optical properties by darkfield microspectroscopy
GNERUCCI, ALESSIO;CONTI, ANTONIO;FUSI, FRANCO;ROMANO, GIOVANNI
2014
Abstract
We present a darkfield optical microspectroscopy technique devoted to the disentangled measurement of the absorption and scattering cross sections of nanoparticle (NP) samples with variable concentration. The robustness of the method, including the needed instrumental calibrations, is examined in detail by analyzing and quantifying the major sources of statistic and systematic errors. As an exemplary case, results are presented on a gold NP colloid. The technique takes advantage of a simple inverted microscope, coupled with a spectrograph and equipped with a darkfield condenser and a variable numerical aperture objective to obtain spectra either in darkfield or brightfield optical configurations. By adopting the Lambert-Beer (LB) equation modeling, we were able to disentangle and measure with a single setup the absorption, scattering, and extinction coefficients of the same sample by combining three spectra, obtained by opportunely varying the objective numerical aperture. Typical plasmonic resonances were recognized at approximately 520 and 750 nm. Optical coefficients were measured as a function of particle number density (0.04-3.94 mu m(-3), corresponding to 40 mu M-4 mM nominal Au concentration) and good linearity was verified up to approximate to 1.5 mu m(-3) (approximate to 1 mM Au). Moreover, extinction and scattering cross sections were quantified and the validity of the LB approximation was reviewed. Besides its applications to plasmonic NPs, this method may be appropriate for any colloid, provided there exists a characteristic spectral feature in the ultraviolet-visible-near infrared range. This technique may be exploited to localize NPs in biological samples.File | Dimensione | Formato | |
---|---|---|---|
A simple method to disentangle nanoparticle optical properties by darkfield microspectroscopy.pdf
Accesso chiuso
Descrizione: testo editoriale dell'articolo
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
460.12 kB
Formato
Adobe PDF
|
460.12 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.