We consider the inverse problem of determining the Lam\'e moduli for a piecewise constant elasticity tensor C=∑jCjχDj, where {Dj} is a known finite partition of the body Ω, from the Dirichlet-to-Neumann map. We prove that Lipschitz stability estimates can be derived under C1,α regularity assumptions on the interfaces.
Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces / Elena Beretta; Elisa Francini; Antonino Morassi; Edi Rosset; Sergio Vessella. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 30:(2014), pp. 1-18. [10.1088/0266-5611/30/12/125005]
Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces
FRANCINI, ELISA;VESSELLA, SERGIO
2014
Abstract
We consider the inverse problem of determining the Lam\'e moduli for a piecewise constant elasticity tensor C=∑jCjχDj, where {Dj} is a known finite partition of the body Ω, from the Dirichlet-to-Neumann map. We prove that Lipschitz stability estimates can be derived under C1,α regularity assumptions on the interfaces.File | Dimensione | Formato | |
---|---|---|---|
berettafrancinimorassirossetvessella20014ip.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
359.68 kB
Formato
Adobe PDF
|
359.68 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.