We consider the inverse problem of determining the Lam\'e moduli for a piecewise constant elasticity tensor C=∑jCjχDj, where {Dj} is a known finite partition of the body Ω, from the Dirichlet-to-Neumann map. We prove that Lipschitz stability estimates can be derived under C1,α regularity assumptions on the interfaces.

Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces / Elena Beretta; Elisa Francini; Antonino Morassi; Edi Rosset; Sergio Vessella. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 30:(2014), pp. 1-18. [10.1088/0266-5611/30/12/125005]

Lipschitz continuous dependence of piecewise constant Lamé coefficients from boundary data: the case of non flat interfaces

FRANCINI, ELISA;VESSELLA, SERGIO
2014

Abstract

We consider the inverse problem of determining the Lam\'e moduli for a piecewise constant elasticity tensor C=∑jCjχDj, where {Dj} is a known finite partition of the body Ω, from the Dirichlet-to-Neumann map. We prove that Lipschitz stability estimates can be derived under C1,α regularity assumptions on the interfaces.
2014
30
1
18
Elena Beretta; Elisa Francini; Antonino Morassi; Edi Rosset; Sergio Vessella
File in questo prodotto:
File Dimensione Formato  
berettafrancinimorassirossetvessella20014ip.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 359.68 kB
Formato Adobe PDF
359.68 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/891935
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 20
social impact