In this paper we define an efficient implementation of Runge-Kutta methods of Radau IIA type, which are commonly used when solving stiff ODE-IVPs problems. The proposed implementation relies on an alternative low-rank formulation of the methods, for which a splitting procedure is easily defined. The linear convergence analysis of this splitting procedure exhibits excellent properties, which are confirmed by its performance on a few numerical tests.

Efficient implementation of Radau collocation methods / L.Brugnano; F.Iavernaro; C.Magherini. - In: APPLIED NUMERICAL MATHEMATICS. - ISSN 0168-9274. - STAMPA. - 87:(2015), pp. 100-113. [10.1016/j.apnum.2014.09.003]

Efficient implementation of Radau collocation methods

BRUGNANO, LUIGI;
2015

Abstract

In this paper we define an efficient implementation of Runge-Kutta methods of Radau IIA type, which are commonly used when solving stiff ODE-IVPs problems. The proposed implementation relies on an alternative low-rank formulation of the methods, for which a splitting procedure is easily defined. The linear convergence analysis of this splitting procedure exhibits excellent properties, which are confirmed by its performance on a few numerical tests.
2015
87
100
113
L.Brugnano; F.Iavernaro; C.Magherini
File in questo prodotto:
File Dimensione Formato  
apnum 87 (2015) 100-113.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 446.42 kB
Formato Adobe PDF
446.42 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/892735
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact