Some foundational results on the geometry of Lorentz-Minkowski spaces and Finsler spacetimes are obtained. We prove that the local light cone structure of a reversible Finsler spacetime with more than two dimensions is topologically the same as that of Lorentzian spacetimes: at each point we have just two strictly convex causal cones which intersect only at the origin. Moreover, we prove a reverse Cauchy-Schwarz inequality for these spaces and a corresponding reverse triangle inequality. The Legendre map is proved to be a diffeomorphism in the general pseudo-Finsler case provided the dimension is larger than two.
Light cones in Finsler spacetime / E. Minguzzi. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 334:(2015), pp. 1529-1551. [10.1007/s00220-014-2215-6]
Light cones in Finsler spacetime
MINGUZZI, ETTORE
2015
Abstract
Some foundational results on the geometry of Lorentz-Minkowski spaces and Finsler spacetimes are obtained. We prove that the local light cone structure of a reversible Finsler spacetime with more than two dimensions is topologically the same as that of Lorentzian spacetimes: at each point we have just two strictly convex causal cones which intersect only at the origin. Moreover, we prove a reverse Cauchy-Schwarz inequality for these spaces and a corresponding reverse triangle inequality. The Legendre map is proved to be a diffeomorphism in the general pseudo-Finsler case provided the dimension is larger than two.| File | Dimensione | Formato | |
|---|---|---|---|
|
Minguzzi - Light cones in Finsler spacetime - Commun. Math. Phys. 334 (2015) 1529-1551.pdf
accesso aperto
Descrizione: articolo
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
305.25 kB
Formato
Adobe PDF
|
305.25 kB | Adobe PDF | |
|
1403.7060.pdf
accesso aperto
Descrizione: versione preprint arxiv
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
295.07 kB
Formato
Adobe PDF
|
295.07 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



