Some foundational results on the geometry of Lorentz-Minkowski spaces and Finsler spacetimes are obtained. We prove that the local light cone structure of a reversible Finsler spacetime with more than two dimensions is topologically the same as that of Lorentzian spacetimes: at each point we have just two strictly convex causal cones which intersect only at the origin. Moreover, we prove a reverse Cauchy-Schwarz inequality for these spaces and a corresponding reverse triangle inequality. The Legendre map is proved to be a diffeomorphism in the general pseudo-Finsler case provided the dimension is larger than two.

Light cones in Finsler spacetime / E. Minguzzi. - In: COMMUNICATIONS IN MATHEMATICAL PHYSICS. - ISSN 0010-3616. - STAMPA. - 334:(2015), pp. 1529-1551. [10.1007/s00220-014-2215-6]

Light cones in Finsler spacetime

MINGUZZI, ETTORE
2015

Abstract

Some foundational results on the geometry of Lorentz-Minkowski spaces and Finsler spacetimes are obtained. We prove that the local light cone structure of a reversible Finsler spacetime with more than two dimensions is topologically the same as that of Lorentzian spacetimes: at each point we have just two strictly convex causal cones which intersect only at the origin. Moreover, we prove a reverse Cauchy-Schwarz inequality for these spaces and a corresponding reverse triangle inequality. The Legendre map is proved to be a diffeomorphism in the general pseudo-Finsler case provided the dimension is larger than two.
2015
334
1529
1551
E. Minguzzi
File in questo prodotto:
File Dimensione Formato  
Minguzzi - Light cones in Finsler spacetime - Commun. Math. Phys. 334 (2015) 1529-1551.pdf

accesso aperto

Descrizione: articolo
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 305.25 kB
Formato Adobe PDF
305.25 kB Adobe PDF
1403.7060.pdf

accesso aperto

Descrizione: versione preprint arxiv
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 295.07 kB
Formato Adobe PDF
295.07 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/908336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 56
  • ???jsp.display-item.citation.isi??? 55
social impact