In this paper we expose the design of a system for the remote monitoring of Heart Failure (HF) patients, complemented by an Artificial Intelligence (AI) engine to perform a classification of patients severity on a three levels scale: mild, moderate and severe. The system allows multiple care regimes: a scheme called IHC (Integrated Home Care) and a scheme called CIHC (Continuous Integrated Home Care). The first needs that a health care worker is traveling periodically to the patient’s home to perform various measurements of physiological parameters, the second is fully automatic but requires that a kit for the automatic acquisition of the parameters is provided to the patient. In results section we show performances of AI, trained using our clinical partner database, in assessing HF severity and HF type that are respectively 89% and 86% hold out accuracy. This system would facilitate the application of the principles of the Chronic Care Model, in our case regarding the assistance for Heart Failure, but the system is scalable to many other chronic diseases. Due to the amount of input parameters and the fact that HF involves the whole body, we believe that it can be the right disease for the prototype of a disease-specialized system that allows structured communications between hospital and territory.

A System to Improve Continuity of Care in Heart Failure Patients / G. Guidi; P. Melillo;M. C. Pettenati;M. Milli;E. Iadanza. - ELETTRONICO. - 42:(2014), pp. 155-158. (Intervento presentato al convegno ICHI 2013 tenutosi a Vilamoura, Portugal nel 7-9 novembre 2013) [10.1007/978-3-319-03005-0_40].

A System to Improve Continuity of Care in Heart Failure Patients

GUIDI, GABRIELE;IADANZA, ERNESTO
2014

Abstract

In this paper we expose the design of a system for the remote monitoring of Heart Failure (HF) patients, complemented by an Artificial Intelligence (AI) engine to perform a classification of patients severity on a three levels scale: mild, moderate and severe. The system allows multiple care regimes: a scheme called IHC (Integrated Home Care) and a scheme called CIHC (Continuous Integrated Home Care). The first needs that a health care worker is traveling periodically to the patient’s home to perform various measurements of physiological parameters, the second is fully automatic but requires that a kit for the automatic acquisition of the parameters is provided to the patient. In results section we show performances of AI, trained using our clinical partner database, in assessing HF severity and HF type that are respectively 89% and 86% hold out accuracy. This system would facilitate the application of the principles of the Chronic Care Model, in our case regarding the assistance for Heart Failure, but the system is scalable to many other chronic diseases. Due to the amount of input parameters and the fact that HF involves the whole body, we believe that it can be the right disease for the prototype of a disease-specialized system that allows structured communications between hospital and territory.
2014
IFMBE proceedings
ICHI 2013
Vilamoura, Portugal
7-9 novembre 2013
G. Guidi; P. Melillo;M. C. Pettenati;M. Milli;E. Iadanza
File in questo prodotto:
File Dimensione Formato  
An Heart Failure Telecare System to improve continuity of care_FINAL.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 532.57 kB
Formato Adobe PDF
532.57 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/919961
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact