In this study, we describe an automatic classifier of patients with Heart Failure designed for a telemonitoring scenario, improving the results obtained in our previous works. Our previous studies showed that the technique that better processes the heart failure typical telemonitoring-parameters is the Classification Tree. We therefore decided to analyze the data with its direct evolution that is the Random Forest algorithm. The results show an improvement both in accuracy and in limiting critical errors.
Random forest for automatic assessment of heart failure severity in a telemonitoring scenario / G. Guidi; M. C. Pettenati; R. Miniati ;E. Iadanza. - ELETTRONICO. - (2013), pp. 3230-3233. (Intervento presentato al convegno 35th Annual International Conference of the IEEE EMBS tenutosi a Osaka, Japan) [10.1109/EMBC.2013.6610229].
Random forest for automatic assessment of heart failure severity in a telemonitoring scenario
GUIDI, GABRIELE;MINIATI, ROBERTO;IADANZA, ERNESTO
2013
Abstract
In this study, we describe an automatic classifier of patients with Heart Failure designed for a telemonitoring scenario, improving the results obtained in our previous works. Our previous studies showed that the technique that better processes the heart failure typical telemonitoring-parameters is the Classification Tree. We therefore decided to analyze the data with its direct evolution that is the Random Forest algorithm. The results show an improvement both in accuracy and in limiting critical errors.File | Dimensione | Formato | |
---|---|---|---|
08681522.PDF
Accesso chiuso
Descrizione: Articolo principale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.23 MB
Formato
Adobe PDF
|
1.23 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.