In this paper, a zero-dimensional model for the design of radial turbo-expanders for ORC applications is discussed, with special reference to the estimation of losses and efficiency; a comparison between different fluids (R134a, R1234yf, R236fa, R245fa, Cyclohexane, N-Pentane) is presented and discussed, referring to a typical small-size application (50 kW). In the model, different methods for the design of radial turbines are screened, with special attention to the estimation of losses, for which correlations from literature are used. Real Equations Of State (EOS) are applied to the expansion process in place of the traditionally adopted Mach relationships for ideal gas, which is a significant advancement for modeling organic fluids in ORC, often operating near to critical conditions. The results show that the total to total efficiency of the designed machines range between 0.72 and 0.80, depending on the considered fluid. Generally, higher efficiency (1.5–2.5% points) can be achieved adopting backswept-bladed rotors. The most significant losses come from the rotor secondary flows, due to the high curvature of blade profiles combined to the large pressure gradient. The best performing fluids are R236fa and R245fa, followed by R134a and R1234yf. Finally, starting from the developed design tool, an off-design analysis of turbo-expanders is presented. Once the design data are available, the characteristic curves of the expander at variable temperature, pressure and fluid mass flowrate at the expander inlet for different values of the specific speed are built. It is thus possible to evaluate the performance of the radial expanders when working far from design point. This analysis, demonstrated for R134a, shows that the total to static efficiency has a relatively modest sensitivity to the off design of the expansion ratio, especially at corrected speed below the design value.
Design and performance prediction of radial ORC turboexpanders / Daniele Fiaschi; Giampaolo Manfrida; Francesco Maraschiello. - In: APPLIED ENERGY. - ISSN 0306-2619. - ELETTRONICO. - 138:(2015), pp. 517-532. [10.1016/j.apenergy.2014.10.052]
Design and performance prediction of radial ORC turboexpanders
FIASCHI, DANIELE;MANFRIDA, GIAMPAOLO;MARASCHIELLO, FRANCESCO
2015
Abstract
In this paper, a zero-dimensional model for the design of radial turbo-expanders for ORC applications is discussed, with special reference to the estimation of losses and efficiency; a comparison between different fluids (R134a, R1234yf, R236fa, R245fa, Cyclohexane, N-Pentane) is presented and discussed, referring to a typical small-size application (50 kW). In the model, different methods for the design of radial turbines are screened, with special attention to the estimation of losses, for which correlations from literature are used. Real Equations Of State (EOS) are applied to the expansion process in place of the traditionally adopted Mach relationships for ideal gas, which is a significant advancement for modeling organic fluids in ORC, often operating near to critical conditions. The results show that the total to total efficiency of the designed machines range between 0.72 and 0.80, depending on the considered fluid. Generally, higher efficiency (1.5–2.5% points) can be achieved adopting backswept-bladed rotors. The most significant losses come from the rotor secondary flows, due to the high curvature of blade profiles combined to the large pressure gradient. The best performing fluids are R236fa and R245fa, followed by R134a and R1234yf. Finally, starting from the developed design tool, an off-design analysis of turbo-expanders is presented. Once the design data are available, the characteristic curves of the expander at variable temperature, pressure and fluid mass flowrate at the expander inlet for different values of the specific speed are built. It is thus possible to evaluate the performance of the radial expanders when working far from design point. This analysis, demonstrated for R134a, shows that the total to static efficiency has a relatively modest sensitivity to the off design of the expansion ratio, especially at corrected speed below the design value.File | Dimensione | Formato | |
---|---|---|---|
Design and performance prediction of radial ORC turboexpanders.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.39 MB
Formato
Adobe PDF
|
1.39 MB | Adobe PDF | Richiedi una copia |
Design of turboexpanders for ORC_Preprint.pdf
accesso aperto
Tipologia:
Preprint (Submitted version)
Licenza:
Open Access
Dimensione
1.73 MB
Formato
Adobe PDF
|
1.73 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.