Regularity properties of intrinsic objects for a large class of Stein Manifolds, namely of Monge–Ampère exhaustions and Kobayashi distance, are interpreted in terms of modular data. The results lead to a construction of an infinite dimensional family of convex domains with squared Kobayashi distance of prescribed regularity properties. A new sharp refinement of Stoll’s characterization of C^n is also given. The research was partially supported by GNSAGA of INdAM

Modular data and regularity of Monge–Ampère exhaustions and of Kobayashi distance / Giorgio Patrizio; Andrea Spiro. - In: MATHEMATISCHE ANNALEN. - ISSN 0025-5831. - ELETTRONICO. - 362:(2015), pp. 425-449. [10.1007/s00208-014-1124-5]

Modular data and regularity of Monge–Ampère exhaustions and of Kobayashi distance

PATRIZIO, GIORGIO;
2015

Abstract

Regularity properties of intrinsic objects for a large class of Stein Manifolds, namely of Monge–Ampère exhaustions and Kobayashi distance, are interpreted in terms of modular data. The results lead to a construction of an infinite dimensional family of convex domains with squared Kobayashi distance of prescribed regularity properties. A new sharp refinement of Stoll’s characterization of C^n is also given. The research was partially supported by GNSAGA of INdAM
2015
362
425
449
Giorgio Patrizio; Andrea Spiro
File in questo prodotto:
File Dimensione Formato  
ModularDataRegularity(10.1007_s00208-014-1124-5-3).pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 794.17 kB
Formato Adobe PDF
794.17 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/931532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact