By using topological methods,mainly the degree of a tangent vector field, we establishmultiplicity results for T-periodic solutions of parametrized T-periodic perturbations of autonomous ODEs on a differentiable manifold M. In order to provide insights into the key notion of T-resonance, we consider the elementary situations M = R and M = R^2. Doing so, we providemore comprehensive analysis of those cases and find improved conditions.
About the notion of non-T-resonance and applications to topological multiplicity results for ODEs on differentiable manifolds / Luca Bisconti; Marco Spadini. - In: MATHEMATICAL METHODS IN THE APPLIED SCIENCES. - ISSN 0170-4214. - STAMPA. - 38:(2015), pp. 4760-4773. [10.1002/mma.3390]
About the notion of non-T-resonance and applications to topological multiplicity results for ODEs on differentiable manifolds
BISCONTI, LUCA
;SPADINI, MARCO
2015
Abstract
By using topological methods,mainly the degree of a tangent vector field, we establishmultiplicity results for T-periodic solutions of parametrized T-periodic perturbations of autonomous ODEs on a differentiable manifold M. In order to provide insights into the key notion of T-resonance, we consider the elementary situations M = R and M = R^2. Doing so, we providemore comprehensive analysis of those cases and find improved conditions.File | Dimensione | Formato | |
---|---|---|---|
bisconti-Spadini-MMAS-2015-arxiv.pdf
accesso aperto
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
2.94 MB
Formato
Adobe PDF
|
2.94 MB | Adobe PDF | |
Bisconti-Spadini-MMA-2015-pubblicato.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.45 MB
Formato
Adobe PDF
|
1.45 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.