Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV(Rn). We also deduce, as a corollary of this result, a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.

Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation / A. Figalli; F. Maggi; A. Pratelli. - In: ADVANCES IN MATHEMATICS. - ISSN 0001-8708. - STAMPA. - 242:(2013), pp. 80-101. [10.1016/j.aim.2013.04.007]

Sharp stability theorems for the anisotropic Sobolev and log-Sobolev inequalities on functions of bounded variation

MAGGI, FRANCESCO;
2013

Abstract

Combining rearrangement techniques with Gromov’s proof (via optimal mass transportation) of the 1-Sobolev inequality, we prove a sharp quantitative version of the anisotropic Sobolev inequality on BV(Rn). We also deduce, as a corollary of this result, a sharp stability estimate for the anisotropic 1-log-Sobolev inequality.
2013
242
80
101
A. Figalli; F. Maggi; A. Pratelli
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/952153
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 35
social impact