INTRODUCTION: Metabolic syndrome (MetS) and lower urinary tract symptoms (LUTS) are often associated. Bladder detrusor hyper-contractility-a major LUTS determinant-is characterized by increased Ras homolog gene family, member A/Rho-associated protein kinase (RhoA/ROCK) signaling, which is often upregulated in MetS. AIM: This study investigated the effects of tadalafil dosing on RhoA/ROCK signaling in bladder, in a rabbit model of high-fat diet (HFD)-induced MetS. METHODS: Adult male rabbits feeding a HFD for 12 weeks. A subset of HFD animals was treated with tadalafil (2 mg/kg/day, 1 week: the last of the 12 weeks) and compared with HFD and control (feeding a regular diet) rabbits. MAIN OUTCOME MEASURES: In vitro contractility studies to evaluate the relaxant effect of the selective ROCK inhibitor, Y-27632, in carbachol precontracted bladder strips. Evaluation of RhoA activation by its membrane translocation. Immunohistochemistry for ROCK expression has been performed to evaluate ROCK expression in bladder from the different experimental groups. mRNA expression of inflammation, pro-fibrotic markers by quantitative RT-PCR has been performed to evaluate the effect of tadalafil on MetS-induced inflammation and fibrosis within the bladder. The in vitro effect of tadalafil on RhoA/ROCK signaling in bladder smooth muscle cells was evaluated by using chemotaxis assay. RESULTS: Bladder strips from HFD rabbits showed hyper-responsiveness to Y-27632, indicating RhoA/ROCK overactivity in HFD bladder compared with matched controls. Accordingly, the fraction of activated (translocated to the membrane) RhoA as well as ROCK expression are increased in HFD bladder. Tadalafil dosing normalized HFD-induced bladder hypersensitivity to Y-27632, by reducing RhoA membrane translocation and ROCK overexpression. Tadalafil dosing reduced mRNA expression of inflammatory, pro-fibrotic, and hypoxia markers. A direct inhibitory effect of tadalafil on RhoA/ROCK signaling in bladder smooth muscle cell was demonstrated by using chemotaxis assay. Pre-treatment with tadalafil inhibited both basal and PDGF-induced migration of bladder smooth muscle cells. CONCLUSIONS: Tadalafil dosing reduced RhoA/ROCK signaling and smooth muscle overactivity in an animal model of MetS-associated bladder alterations. Our findings suggest a novel mechanism of action of tadalafil in alleviating LUTS in MetS patients.

Tadalafil effect on metabolic syndrome-associated bladder alterations: an experimental study in a rabbit model / Vignozzi, L; Filippi, S; Comeglio, P; Cellai, I; Morelli, A; Maneschi, E; Sarchielli, E; Gacci, M; Carini, M; Vannelli, Gb; Maggi, M.. - In: JOURNAL OF SEXUAL MEDICINE. - ISSN 1743-6095. - STAMPA. - 11:(2014), pp. 1159-1172. [10.1111/jsm.12478]

Tadalafil effect on metabolic syndrome-associated bladder alterations: an experimental study in a rabbit model.

VIGNOZZI, LINDA;FILIPPI, SANDRA;COMEGLIO, PAOLO;CELLAI, ILARIA;MORELLI, ANNAMARIA;MANESCHI, ELENA;SARCHIELLI, ERICA;GACCI, MAURO;CARINI, MARCO;VANNELLI, GABRIELLA;MAGGI, MARIO
2014

Abstract

INTRODUCTION: Metabolic syndrome (MetS) and lower urinary tract symptoms (LUTS) are often associated. Bladder detrusor hyper-contractility-a major LUTS determinant-is characterized by increased Ras homolog gene family, member A/Rho-associated protein kinase (RhoA/ROCK) signaling, which is often upregulated in MetS. AIM: This study investigated the effects of tadalafil dosing on RhoA/ROCK signaling in bladder, in a rabbit model of high-fat diet (HFD)-induced MetS. METHODS: Adult male rabbits feeding a HFD for 12 weeks. A subset of HFD animals was treated with tadalafil (2 mg/kg/day, 1 week: the last of the 12 weeks) and compared with HFD and control (feeding a regular diet) rabbits. MAIN OUTCOME MEASURES: In vitro contractility studies to evaluate the relaxant effect of the selective ROCK inhibitor, Y-27632, in carbachol precontracted bladder strips. Evaluation of RhoA activation by its membrane translocation. Immunohistochemistry for ROCK expression has been performed to evaluate ROCK expression in bladder from the different experimental groups. mRNA expression of inflammation, pro-fibrotic markers by quantitative RT-PCR has been performed to evaluate the effect of tadalafil on MetS-induced inflammation and fibrosis within the bladder. The in vitro effect of tadalafil on RhoA/ROCK signaling in bladder smooth muscle cells was evaluated by using chemotaxis assay. RESULTS: Bladder strips from HFD rabbits showed hyper-responsiveness to Y-27632, indicating RhoA/ROCK overactivity in HFD bladder compared with matched controls. Accordingly, the fraction of activated (translocated to the membrane) RhoA as well as ROCK expression are increased in HFD bladder. Tadalafil dosing normalized HFD-induced bladder hypersensitivity to Y-27632, by reducing RhoA membrane translocation and ROCK overexpression. Tadalafil dosing reduced mRNA expression of inflammatory, pro-fibrotic, and hypoxia markers. A direct inhibitory effect of tadalafil on RhoA/ROCK signaling in bladder smooth muscle cell was demonstrated by using chemotaxis assay. Pre-treatment with tadalafil inhibited both basal and PDGF-induced migration of bladder smooth muscle cells. CONCLUSIONS: Tadalafil dosing reduced RhoA/ROCK signaling and smooth muscle overactivity in an animal model of MetS-associated bladder alterations. Our findings suggest a novel mechanism of action of tadalafil in alleviating LUTS in MetS patients.
2014
11
1159
1172
Vignozzi, L; Filippi, S; Comeglio, P; Cellai, I; Morelli, A; Maneschi, E; Sarchielli, E; Gacci, M; Carini, M; Vannelli, Gb; Maggi, M.
File in questo prodotto:
File Dimensione Formato  
tadalafil e bladder.pdf

Accesso chiuso

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 637.27 kB
Formato Adobe PDF
637.27 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/953283
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 22
social impact