In animal models, the cardiotropic hormone relaxin has been shown to protect the heart against ischemia and reperfusion-induced damage, acting by multiple mechanisms that primarily involve the coronary vessels. This in vitro study evaluates whether relaxin also has a direct protective action on cardiac muscle cells. H9c2 rat cardiomyoblasts and primary mouse cardiomyocytes were subjected to hypoxia and reoxygenation. In some experiments, relaxin was added preventatively before hypoxia; in others, at reoxygenation. To elucidate its mechanisms of action, we focused on Notch-1, which is involved in heart pre- and postconditioning to ischemia. Inactivated RLX was used as negative control. Relaxin (17 nmol/L, EC50 4.7 nmol/L), added 24 h before hypoxia or at reoxygenation, protected against cardiomyocyte injury. In fact, relaxin significantly increased cell viability (assayed by trypan blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), decreased apoptosis (assayed by TUNEL and bax/bcl-2 ratio), and reduced nitroxidative damage (assayed by nitrotyrosine expression and 8-hydroxy-deoxyguanosine levels). These effects were partly attributable to the ability of relaxin to upregulate Notch-1 signaling; indeed, blockade of Notch-1 activation with the specific inhibitor DAPT reduced relaxin-induced cardioprotection during hypoxia and reoxygenation. This study adds new mechanistic insights on the cardioprotective role of relaxin on ischemic and oxidative damage.

Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway / Boccalini G; Sassoli C; Formigli L; Bani D; Nistri S.. - In: THE FASEB JOURNAL. - ISSN 0892-6638. - STAMPA. - 29:(2015), pp. 239-249. [10.1096/fj.14-254854]

Relaxin protects cardiac muscle cells from hypoxia/reoxygenation injury: involvement of the Notch-1 pathway

BOCCALINI, GIULIA;SASSOLI, CHIARA;FORMIGLI, LUCIA;BANI, DANIELE;NISTRI, SILVIA
2015

Abstract

In animal models, the cardiotropic hormone relaxin has been shown to protect the heart against ischemia and reperfusion-induced damage, acting by multiple mechanisms that primarily involve the coronary vessels. This in vitro study evaluates whether relaxin also has a direct protective action on cardiac muscle cells. H9c2 rat cardiomyoblasts and primary mouse cardiomyocytes were subjected to hypoxia and reoxygenation. In some experiments, relaxin was added preventatively before hypoxia; in others, at reoxygenation. To elucidate its mechanisms of action, we focused on Notch-1, which is involved in heart pre- and postconditioning to ischemia. Inactivated RLX was used as negative control. Relaxin (17 nmol/L, EC50 4.7 nmol/L), added 24 h before hypoxia or at reoxygenation, protected against cardiomyocyte injury. In fact, relaxin significantly increased cell viability (assayed by trypan blue and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide), decreased apoptosis (assayed by TUNEL and bax/bcl-2 ratio), and reduced nitroxidative damage (assayed by nitrotyrosine expression and 8-hydroxy-deoxyguanosine levels). These effects were partly attributable to the ability of relaxin to upregulate Notch-1 signaling; indeed, blockade of Notch-1 activation with the specific inhibitor DAPT reduced relaxin-induced cardioprotection during hypoxia and reoxygenation. This study adds new mechanistic insights on the cardioprotective role of relaxin on ischemic and oxidative damage.
2015
29
239
249
Goal 3: Good health and well-being for people
Boccalini G; Sassoli C; Formigli L; Bani D; Nistri S.
File in questo prodotto:
File Dimensione Formato  
FASEB J-2015-Boccalini-239-49.pdf

accesso aperto

Descrizione: Full Text
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/956849
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 62
social impact