Realized volatilities observed across several assets show a common secular trend and some idiosyncratic pattern which we accommodate by extending the class of Multiplicative Error Models (MEMs). In our model, the common trend is estimated nonparametrically, while the idiosyncratic dynamics are assumed to follow univariate MEMs. Estimation theory based on seminonparametric methods is developed for this class of models for large cross-sections and large time dimensions. The methodology is illustrated using two panels of realized volatility measures between 2001 and 2008: the SPDR Sectoral Indices of the S&P500 and the constituents of the S&P100. Results show that the shape of the common volatility trend captures the overall level of risk in the market and that the idiosyncratic dynamics have a heterogeneous degree of persistence around the trend. Out-of-sample forecasting shows that the proposed methodology improves volatility prediction over several benchmark specifications.
Disentangling systemic and idiosyncratic volatility for large panels of assets. A seminonparametric Vector MEM / Matteo Barigozzi; Christian T. Brownlees; Giampiero M. Gallo; David Veredas. - In: JOURNAL OF ECONOMETRICS. - ISSN 0304-4076. - STAMPA. - 182 (2):(2014), pp. 364-384. [10.1016/j.jeconom.2014.05.017]
Disentangling systemic and idiosyncratic volatility for large panels of assets. A seminonparametric Vector MEM
GALLO, GIAMPIERO MARIA;
2014
Abstract
Realized volatilities observed across several assets show a common secular trend and some idiosyncratic pattern which we accommodate by extending the class of Multiplicative Error Models (MEMs). In our model, the common trend is estimated nonparametrically, while the idiosyncratic dynamics are assumed to follow univariate MEMs. Estimation theory based on seminonparametric methods is developed for this class of models for large cross-sections and large time dimensions. The methodology is illustrated using two panels of realized volatility measures between 2001 and 2008: the SPDR Sectoral Indices of the S&P500 and the constituents of the S&P100. Results show that the shape of the common volatility trend captures the overall level of risk in the market and that the idiosyncratic dynamics have a heterogeneous degree of persistence around the trend. Out-of-sample forecasting shows that the proposed methodology improves volatility prediction over several benchmark specifications.File | Dimensione | Formato | |
---|---|---|---|
barigozzietalesteso.pdf
accesso aperto
Tipologia:
Altro
Licenza:
Open Access
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.