Ind1, a mitochondrial P-loop NTPase is essential for assembly of respiratory complex-I. Respiratory complex-I (NADH: ubiquinone oxidoreductase), a large (mitochondrial inner membrane) enzyme, is made of 45 subunits and 8 iron–sulfur clusters. Ind1, an iron–sulfur cluster protein involved in the maturation of respiratory complex and binds an Fe/S cluster via a conserved CXXC motif in a labile way. Ind1 has been proposed as a specialized biogenesis factor involved in delivering the Fe/S clusters to the apo complex-I subunits. The IND1 gene is conserved in eukaryotes and is present in genomes of the species that retain functional respiratory complex-I. Depletion of human Ind1 causes ultra-structural changes in depleted mitochondria, including the loss of cristae membranes, massive remodeling of respiratory super complexes, and increased lactate production. Ind1 sequence bears known nucleotide binding domain motifs and was first classified as Nucleotide Binding Protein-Like (NUBPL). Despite the obvious importance of Ind1, very little is known about this protein; in particular its structure as well as its Fe/S cluster binding properties. In the present work we show that the expression of native huInd1 in Escherichia coli stimulates over-expression of the beta-lactamase TEM-1 from E. coli. The homology modeling of huInd1 shows hallmark of Rossmann fold, where a central beta sheet is covered by helices on either side. In the light of the modeled structure of huInd1, we hypothesize that huInd1 binds to the untranslated region (UTR) of the TEM-1 mRNA at 3′ site and thereby reducing the possibility of its endonucleolytic cleavage, resulting in over-expression of TEM-1.
Human Ind1 expression causes over-expression of E. coli beta-lactamase ampicillin resistance protein / Chakrabarti VS; Mikolajczyk M; Boscaro F; Calderone V.. - In: PROTEIN EXPRESSION AND PURIFICATION. - ISSN 1046-5928. - STAMPA. - 104C:(2014), pp. 26-33. [10.1016/j.pep.2014.09.005]
Human Ind1 expression causes over-expression of E. coli beta-lactamase ampicillin resistance protein.
CALDERONE, VITO
2014
Abstract
Ind1, a mitochondrial P-loop NTPase is essential for assembly of respiratory complex-I. Respiratory complex-I (NADH: ubiquinone oxidoreductase), a large (mitochondrial inner membrane) enzyme, is made of 45 subunits and 8 iron–sulfur clusters. Ind1, an iron–sulfur cluster protein involved in the maturation of respiratory complex and binds an Fe/S cluster via a conserved CXXC motif in a labile way. Ind1 has been proposed as a specialized biogenesis factor involved in delivering the Fe/S clusters to the apo complex-I subunits. The IND1 gene is conserved in eukaryotes and is present in genomes of the species that retain functional respiratory complex-I. Depletion of human Ind1 causes ultra-structural changes in depleted mitochondria, including the loss of cristae membranes, massive remodeling of respiratory super complexes, and increased lactate production. Ind1 sequence bears known nucleotide binding domain motifs and was first classified as Nucleotide Binding Protein-Like (NUBPL). Despite the obvious importance of Ind1, very little is known about this protein; in particular its structure as well as its Fe/S cluster binding properties. In the present work we show that the expression of native huInd1 in Escherichia coli stimulates over-expression of the beta-lactamase TEM-1 from E. coli. The homology modeling of huInd1 shows hallmark of Rossmann fold, where a central beta sheet is covered by helices on either side. In the light of the modeled structure of huInd1, we hypothesize that huInd1 binds to the untranslated region (UTR) of the TEM-1 mRNA at 3′ site and thereby reducing the possibility of its endonucleolytic cleavage, resulting in over-expression of TEM-1.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1046592814002022-main.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
1.42 MB
Formato
Adobe PDF
|
1.42 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.