A covering of a group is a finite set of proper subgroups whose union is the whole group. A covering is minimal if there is no covering of smaller cardinality, and it is nilpotent if all its members are nilpotent subgroups. We complete a proof that every group that has a nilpotent minimal covering is solvable, starting from the previously known result that a minimal counterexample is an almost simple finite group.
The solvability of groups with nilpotent minimal coverings / Russell D. Blyth; Francesco Fumagalli; Marta Morigi. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 427:(2015), pp. 375-386. [10.1016/j.jalgebra.2014.12.033]
The solvability of groups with nilpotent minimal coverings
FUMAGALLI, FRANCESCO;
2015
Abstract
A covering of a group is a finite set of proper subgroups whose union is the whole group. A covering is minimal if there is no covering of smaller cardinality, and it is nilpotent if all its members are nilpotent subgroups. We complete a proof that every group that has a nilpotent minimal covering is solvable, starting from the previously known result that a minimal counterexample is an almost simple finite group.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0021869315000137-main.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
356.94 kB
Formato
Adobe PDF
|
356.94 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.