Next-generation sequencing might be particularly advantageous in genetically heterogeneous conditions, such as hypertrophic cardiomyopathy (HCM), in which a considerable proportion of patients remain undiagnosed after Sanger. In this study, we present an Italian family with atypical HCM in which a novel disease-causing variant in α-actinin 2 (ACTN2) was identified by next-generation sequencing.A large family spanning 4 generations was examined, exhibiting an autosomal dominant cardiomyopathic trait comprising a variable spectrum of (1) midapical HCM with restrictive evolution with marked biatrial dilatation, (2) early-onset atrial fibrillation and atrioventricular block, and (3) left ventricular noncompaction. In the proband, 48 disease genes for HCM, selected on the basis of published reports, were analyzed by targeted resequencing with a customized enrichment system. After bioinformatics analysis, 4 likely pathogenic variants were identified: TTN c.21977G>A (p.Arg7326Gln); TTN c.8749A>C (p.Thr2917Pro); ACTN2 c.683T>C (p.Met228Thr); and OBSCN c.13475T>G (p.Leu4492Arg). The novel variant ACTN2 c.683T>C (p.Met228Thr), located in the actin-binding domain, proved to be the only mutation fully cosegregating with the cardiomyopathic trait in 18 additional family members (of whom 11 clinically affected). ACTN2 c.683T>C (p.Met228Thr) was absent in 570 alleles of healthy controls and in 1000 Genomes Project and was labeled as Damaging by in silico analysis using polymorphism phenotyping v2, as Deleterious by sorts intolerant from tolerant, and as Disease-Causing by Mutation Taster.A targeted next-generation sequencing approach allowed the identification of a novel ACTN2 variant associated with midapical HCM and juvenile onset of atrial fibrillation, emphasizing the potential of such approach in HCM diagnostic screening.

Novel α-Actinin 2 Variant Associated With Familial Hypertrophic Cardiomyopathy and Juvenile Atrial Arrhythmias: A Massively Parallel Sequencing Study / F. Girolami;M. Iascone;B. Tomberli;S. Bardi;M. Benelli;G. Marseglia;C. Pescucci;L. Pezzoli;M. E. Sana;C. Basso;N. Marziliano;P. A. Merlini;A. Fornaro;F. Cecchi;F. Torricelli;I. Olivotto. - In: CIRCULATION, CARDIOVASCULAR GENETICS. - ISSN 1942-325X. - STAMPA. - 7:(2014), pp. 741-750. [10.1161/CIRCGENETICS.113.000486]

Novel α-Actinin 2 Variant Associated With Familial Hypertrophic Cardiomyopathy and Juvenile Atrial Arrhythmias: A Massively Parallel Sequencing Study.

TOMBERLI, BENEDETTA;I. Olivotto
2014

Abstract

Next-generation sequencing might be particularly advantageous in genetically heterogeneous conditions, such as hypertrophic cardiomyopathy (HCM), in which a considerable proportion of patients remain undiagnosed after Sanger. In this study, we present an Italian family with atypical HCM in which a novel disease-causing variant in α-actinin 2 (ACTN2) was identified by next-generation sequencing.A large family spanning 4 generations was examined, exhibiting an autosomal dominant cardiomyopathic trait comprising a variable spectrum of (1) midapical HCM with restrictive evolution with marked biatrial dilatation, (2) early-onset atrial fibrillation and atrioventricular block, and (3) left ventricular noncompaction. In the proband, 48 disease genes for HCM, selected on the basis of published reports, were analyzed by targeted resequencing with a customized enrichment system. After bioinformatics analysis, 4 likely pathogenic variants were identified: TTN c.21977G>A (p.Arg7326Gln); TTN c.8749A>C (p.Thr2917Pro); ACTN2 c.683T>C (p.Met228Thr); and OBSCN c.13475T>G (p.Leu4492Arg). The novel variant ACTN2 c.683T>C (p.Met228Thr), located in the actin-binding domain, proved to be the only mutation fully cosegregating with the cardiomyopathic trait in 18 additional family members (of whom 11 clinically affected). ACTN2 c.683T>C (p.Met228Thr) was absent in 570 alleles of healthy controls and in 1000 Genomes Project and was labeled as Damaging by in silico analysis using polymorphism phenotyping v2, as Deleterious by sorts intolerant from tolerant, and as Disease-Causing by Mutation Taster.A targeted next-generation sequencing approach allowed the identification of a novel ACTN2 variant associated with midapical HCM and juvenile onset of atrial fibrillation, emphasizing the potential of such approach in HCM diagnostic screening.
2014
7
741
750
F. Girolami;M. Iascone;B. Tomberli;S. Bardi;M. Benelli;G. Marseglia;C. Pescucci;L. Pezzoli;M. E. Sana;C. Basso;N. Marziliano;P. A. Merlini;A. Fornaro;F. Cecchi;F. Torricelli;I. Olivotto
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/966413
Citazioni
  • ???jsp.display-item.citation.pmc??? 33
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 57
social impact