We look for the minimizers of the functional Jλ(Ω) = λ|Ω| - P(Ω) among planar convex domains constrained to lie into a given ring. We prove that, according to the values of the parameter λ, the solutions are either a disc or a polygon. In this last case, we describe completely the polygonal solutions by reducing the problem to a finite dimensional optimization problem. We recover classical inequalities for convex sets involving area, perimeter and inradius or circumradius and find a new one.

Optimal sets for a class of minimization problems with convex constraints / Chiara Bianchini; Antoine Henrot. - In: JOURNAL OF CONVEX ANALYSIS. - ISSN 0944-6532. - STAMPA. - 19:(2012), pp. 725-758.

Optimal sets for a class of minimization problems with convex constraints

BIANCHINI, CHIARA;
2012

Abstract

We look for the minimizers of the functional Jλ(Ω) = λ|Ω| - P(Ω) among planar convex domains constrained to lie into a given ring. We prove that, according to the values of the parameter λ, the solutions are either a disc or a polygon. In this last case, we describe completely the polygonal solutions by reducing the problem to a finite dimensional optimization problem. We recover classical inequalities for convex sets involving area, perimeter and inradius or circumradius and find a new one.
2012
19
725
758
Chiara Bianchini; Antoine Henrot
File in questo prodotto:
File Dimensione Formato  
CBianchiniAHenrot_Arxive.pdf

Accesso chiuso

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 338.91 kB
Formato Adobe PDF
338.91 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/966997
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact