The ability to perform isochronous movements when listening to rhythmic auditory input requires a foremost and flexible process to manage timing information. We tested whether isochronic movement is result of a multifaceted control process of timing whose individual elements are sensitive or variously resistant to auditory input. We recorded kinematic parameters of movement while participants, free from visual and touch information, performed repeated isochronous wrist's flexion-extensions in silence, driven by streams of beats or excerpts of music, and during auditory recall. Our study on the temporal behavior of isochronous wrist movements reveals composite interrelations between auditory input and motor performance. Some elements of timing are insensitive to auditory information. Other elements of timing are sensitive to auditory input, but only as regarding rhythmic information. Interestingly, the nature of the auditory input is not real-time influential, comes into play only during recall, and for a comprehensive characteristic of rhythmic motor performance: the tempo. Our results provide evidence of a multiplex control of timing in audio-motor coupling for isochronous movements. This intricate framework to control movement offers unique opportunities for the functional exploration of then normal and diseased human brain.

Isochronous sounds for isochronous movements: The multiplex control of timing in human subjects / Riccardo Bravi; Eros Quarta; Claudia Del Tongo; Alessandro Tognetti; Gabriele Dalle Mura; Diego Minciacchi. - STAMPA. - (2013), pp. 900114-900114. (Intervento presentato al convegno 2013 Annual Meeting of the Society for Neuroscience).

Isochronous sounds for isochronous movements: The multiplex control of timing in human subjects.

BRAVI, RICCARDO;QUARTA, EROS;MINCIACCHI, DIEGO
2013

Abstract

The ability to perform isochronous movements when listening to rhythmic auditory input requires a foremost and flexible process to manage timing information. We tested whether isochronic movement is result of a multifaceted control process of timing whose individual elements are sensitive or variously resistant to auditory input. We recorded kinematic parameters of movement while participants, free from visual and touch information, performed repeated isochronous wrist's flexion-extensions in silence, driven by streams of beats or excerpts of music, and during auditory recall. Our study on the temporal behavior of isochronous wrist movements reveals composite interrelations between auditory input and motor performance. Some elements of timing are insensitive to auditory information. Other elements of timing are sensitive to auditory input, but only as regarding rhythmic information. Interestingly, the nature of the auditory input is not real-time influential, comes into play only during recall, and for a comprehensive characteristic of rhythmic motor performance: the tempo. Our results provide evidence of a multiplex control of timing in audio-motor coupling for isochronous movements. This intricate framework to control movement offers unique opportunities for the functional exploration of then normal and diseased human brain.
2013
Proceeding of the 2013 Annual Meeting of the Society for NeuroscienceSociety for Neuroscience
2013 Annual Meeting of the Society for Neuroscience
Riccardo Bravi; Eros Quarta; Claudia Del Tongo; Alessandro Tognetti; Gabriele Dalle Mura; Diego Minciacchi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/967431
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact