We solve a nonlocal boundary value problem on the half-close interval [1,∞) associated to the differential equation (a(t)|x′|^{α}sgn x′)′+b(t)|x|^{β}sgn x=0, in the the superlinear case α<β. By using a new approach, based on a special energy-type function E, the existence of slowly decaying solutions is examined too.
Positive decaying solutions for differential equations with phi-laplacian / Z. Dosla; M.Marini. - In: BOUNDARY VALUE PROBLEMS. - ISSN 1687-2762. - ELETTRONICO. - 2015:(2015), pp. 0-0. [10.1186/s13661-015-0355-z]
Positive decaying solutions for differential equations with phi-laplacian
MARINI, MAURO
2015
Abstract
We solve a nonlocal boundary value problem on the half-close interval [1,∞) associated to the differential equation (a(t)|x′|^{α}sgn x′)′+b(t)|x|^{β}sgn x=0, in the the superlinear case α<β. By using a new approach, based on a special energy-type function E, the existence of slowly decaying solutions is examined too.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Energ_BVP_ Pubblicato.pdf
accesso aperto
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Open Access
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.