Abstract. Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the torsional effects related to the irregular stiffness and strength distribution due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic stiffness distributions, have been considered, and a statistical analysis has been performed on the induced torsional effects. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings, showing that the Eurocode 8 provisions, despite not allowing explicitly for material strength variability, are conservative as regards the estimation of structural demand.
Torsional effects due to concrete strength variability in existing buildings / M. De Stefano; M. Tanganelli; S. Viti. - In: EARTHQUAKES AND STRUCTURES. - ISSN 2092-7614. - STAMPA. - 8:(2015), pp. 379-399. [10.12989/eas.2015.8.2.379]
Torsional effects due to concrete strength variability in existing buildings
DE STEFANO, MARIO;TANGANELLI, MARCO;VITI, STEFANIA
2015
Abstract
Abstract. Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the torsional effects related to the irregular stiffness and strength distribution due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic stiffness distributions, have been considered, and a statistical analysis has been performed on the induced torsional effects. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings, showing that the Eurocode 8 provisions, despite not allowing explicitly for material strength variability, are conservative as regards the estimation of structural demand.File | Dimensione | Formato | |
---|---|---|---|
2015_EAS_TORSIONAL EFFECTS.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
2.15 MB
Formato
Adobe PDF
|
2.15 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.