The numerical solution of Hamiltonian PDEs has been the subject of many investigations in the last years, specially concerning the use of multi-symplectic methods. We shall here be concerned with the use of energy-conserving methods in the HBVMs class, when a spectral space discretization is considered.
Recent advances in the numerical solution of Hamiltonian PDEs / L.Brugnano; G.Frasca Caccia; F.Iavernaro. - ELETTRONICO. - 1648:(2015), pp. 1500081-1500084. ( INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014) Rodi (GR) 22-28 September, 2014) [10.1063/1.4912438].
Recent advances in the numerical solution of Hamiltonian PDEs
BRUGNANO, LUIGI;FRASCA CACCIA, GIANLUCA;
2015
Abstract
The numerical solution of Hamiltonian PDEs has been the subject of many investigations in the last years, specially concerning the use of multi-symplectic methods. We shall here be concerned with the use of energy-conserving methods in the HBVMs class, when a spectral space discretization is considered.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
AIP Conf. Proc. 1648, 150008 (2015).pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
250.45 kB
Formato
Adobe PDF
|
250.45 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



