The numerical solution of Hamiltonian PDEs has been the subject of many investigations in the last years, specially concerning the use of multi-symplectic methods. We shall here be concerned with the use of energy-conserving methods in the HBVMs class, when a spectral space discretization is considered.

Recent advances in the numerical solution of Hamiltonian PDEs / L.Brugnano; G.Frasca Caccia; F.Iavernaro. - ELETTRONICO. - 1648:(2015), pp. 1500081-1500084. ( INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014) Rodi (GR) 22-28 September, 2014) [10.1063/1.4912438].

Recent advances in the numerical solution of Hamiltonian PDEs

BRUGNANO, LUIGI;FRASCA CACCIA, GIANLUCA;
2015

Abstract

The numerical solution of Hamiltonian PDEs has been the subject of many investigations in the last years, specially concerning the use of multi-symplectic methods. We shall here be concerned with the use of energy-conserving methods in the HBVMs class, when a spectral space discretization is considered.
2015
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014)
INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014)
Rodi (GR)
22-28 September, 2014
L.Brugnano; G.Frasca Caccia; F.Iavernaro
File in questo prodotto:
File Dimensione Formato  
AIP Conf. Proc. 1648, 150008 (2015).pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 250.45 kB
Formato Adobe PDF
250.45 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/984620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact