Abstract: Saponin (5 to 25 micrograms/ml) produced a concentration-dependent decrease in the cellular content of total ATP and [32P]ATP in 32P-labeled human platelets. In platelets whose ATP had been profoundly decreased by saponin, Ca2+ produced phosphomonoesteratic cleavage of the polyphosphoinositides with a concomitant accumulation of phosphatidylinositol. Collagen still induced secretion of serotonin in platelets that had been treated with saponin in the presence or absence of Ca2+. This effect of collagen occurred in the absence of the formation of cyclooxygenase metabolites. In platelet permeabilized with saponin, agonist-induced secretion and aggregation seems to be unrelated to protein phosphorylation, breakdown of the inositol phospholipids by phospholipase C and formation of cyclooxygenase metabolites.

ATP depletion in human platelets caused by permeabilization with saponin does not prevent serotonin secretion induced by collagen / M. RUGGIERO;E. G. LAPETINA;T. P. ZIMMERMAN. - In: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. - ISSN 0006-291X. - STAMPA. - 131(1985), pp. 620-627.

ATP depletion in human platelets caused by permeabilization with saponin does not prevent serotonin secretion induced by collagen

RUGGIERO, MARCO;
1985

Abstract

Abstract: Saponin (5 to 25 micrograms/ml) produced a concentration-dependent decrease in the cellular content of total ATP and [32P]ATP in 32P-labeled human platelets. In platelets whose ATP had been profoundly decreased by saponin, Ca2+ produced phosphomonoesteratic cleavage of the polyphosphoinositides with a concomitant accumulation of phosphatidylinositol. Collagen still induced secretion of serotonin in platelets that had been treated with saponin in the presence or absence of Ca2+. This effect of collagen occurred in the absence of the formation of cyclooxygenase metabolites. In platelet permeabilized with saponin, agonist-induced secretion and aggregation seems to be unrelated to protein phosphorylation, breakdown of the inositol phospholipids by phospholipase C and formation of cyclooxygenase metabolites.
131
620
627
M. RUGGIERO;E. G. LAPETINA;T. P. ZIMMERMAN
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2158/9938
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact