This book deals with the numerical solution of differential problems within the framework of Geometric Integration, a branch of numerical analysis which aims to devise numerical methods able to reproduce, in the discrete solution, relevant geometric properties of the continuous vector field. Among them, a paramount role is played by the so called constants of motion, which are physical quantities that are conserved along the solution trajectories of a large set of differential systems, named Conservative Problems. In particular, the major emphasis will be on Hamiltonian systems, though more general problems will be also considered.

Line Integral Methods for Conservative Problems / L.Brugnano; F.Iavernaro. - STAMPA. - (2016), pp. 1-222. [10.1201/b19319]

Line Integral Methods for Conservative Problems

BRUGNANO, LUIGI
;
2016

Abstract

This book deals with the numerical solution of differential problems within the framework of Geometric Integration, a branch of numerical analysis which aims to devise numerical methods able to reproduce, in the discrete solution, relevant geometric properties of the continuous vector field. Among them, a paramount role is played by the so called constants of motion, which are physical quantities that are conserved along the solution trajectories of a large set of differential systems, named Conservative Problems. In particular, the major emphasis will be on Hamiltonian systems, though more general problems will be also considered.
2016
9781482263848
9781482263855
9780429174568
1
222
L.Brugnano; F.Iavernaro
File in questo prodotto:
File Dimensione Formato  
Line-integral-methods-for-conservative-problems.pdf

Accesso chiuso

Descrizione: pdf editoriale ad uso VQR
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 9.8 MB
Formato Adobe PDF
9.8 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1001408
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? ND
social impact