Streptococcus mutans, the oral pathogenic bacterium provoking dental caries formation, encodes for a β-class carbonic anhydrase (CA, EC 4.2.1.1), SmuCA. This enzyme was cloned, characterized and investigated for its inhibition profile with the major class of CA inhibitors, the primary sulfonamides. SmuCA has a good catalytic activity for the CO2 hydration reaction, with a kcat of 4.2×10(5) s(-1) and kcat/Km of 5.8×10(7) M(-1)×s(-1), and is efficiently inhibited by most sulfonamides (KIs of 246 nM-13.5 μM). The best SmuCA inhibitors were bromosulfanilamide, deacetylated acetazolamide, 4-hydroxymethylbenzenesulfonamide, a pyrimidine-substituted sulfanilamide derivative, aminobenzolamide and compounds structurally similar to it, as well as acetazolamide, methazolamide, indisulam and valdecoxib. These compounds showed inhibition constants ranging between 246 and 468 nM. Identification of effective inhibitors of this enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action.
Sulfonamide inhibition study of the β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans / Dedeoglu, Nurcan; Deluca, Viviana; Isik, Semra; Yildirim, Hatice; Kockar, Feray; Capasso, Clemente; Supuran, Claudiu T.. - In: BIOORGANIC & MEDICINAL CHEMISTRY LETTERS. - ISSN 0960-894X. - STAMPA. - 25:(2015), pp. 2291-2297. [10.1016/j.bmcl.2015.04.037]
Sulfonamide inhibition study of the β-class carbonic anhydrase from the caries producing pathogen Streptococcus mutans
SUPURAN, CLAUDIU TRANDAFIR
2015
Abstract
Streptococcus mutans, the oral pathogenic bacterium provoking dental caries formation, encodes for a β-class carbonic anhydrase (CA, EC 4.2.1.1), SmuCA. This enzyme was cloned, characterized and investigated for its inhibition profile with the major class of CA inhibitors, the primary sulfonamides. SmuCA has a good catalytic activity for the CO2 hydration reaction, with a kcat of 4.2×10(5) s(-1) and kcat/Km of 5.8×10(7) M(-1)×s(-1), and is efficiently inhibited by most sulfonamides (KIs of 246 nM-13.5 μM). The best SmuCA inhibitors were bromosulfanilamide, deacetylated acetazolamide, 4-hydroxymethylbenzenesulfonamide, a pyrimidine-substituted sulfanilamide derivative, aminobenzolamide and compounds structurally similar to it, as well as acetazolamide, methazolamide, indisulam and valdecoxib. These compounds showed inhibition constants ranging between 246 and 468 nM. Identification of effective inhibitors of this enzyme may lead to pharmacological tools useful for understanding the role of S. mutans CAs in dental caries formation, and eventually the development of pharmacological agents with a new mechanism of antibacterial action.I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



