Tropomyosin (Tm) plays a central role in the regulation of muscle contraction and is present in three main isoforms in skeletal and cardiac muscles. In the present work we studied the functional role of α- and βTm on force development by modifying the isoform composition of rabbit psoas skeletal muscle myofibrils and of regulated thin filaments for in vitro motility measurements. Skeletal myofibril regulatory proteins were extracted (78%) and replaced (98%) with Tm isoforms as homogenous ααTm or ββTm dimers and the functional effects were measured. Maximal Ca(2+) activated force was the same in ααTm versus ββTm myofibrils, but ββTm myofibrils showed a marked slowing of relaxation and an impairment of regulation under resting conditions compared to ααTm and controls. ββTm myofibrils also showed a significantly shorter slack sarcomere length and a marked increase in resting tension. Both these mechanical features were almost completely abolished by 10 mM 2,3-butanedione 2-monoxime, suggesting the presence of a significant degree of Ca(2+)-independent cross-bridge formation in ββTm myofibrils. Finally, in motility assay experiments in the absence of Ca(2+) (pCa 9.0), complete regulation of thin filaments required greater ββTm versus ααTm concentrations, while at full activation (pCa 5.0) no effect was observed on maximal thin filament motility speed. We infer from these observations that high contents of ββTm in skeletal muscle result in partial Ca(2+)-independent activation of thin filaments at rest, and longer-lasting and less complete tension relaxation following Ca(2+) removal.

Impact of tropomyosin isoform composition on fast skeletal muscle thin filament regulation and force development / Scellini, B; Piroddi, N.; Flint, G.V.; Regnier, M.; Poggesi, C.; Tesi, C.. - In: JOURNAL OF MUSCLE RESEARCH AND CELL MOTILITY. - ISSN 0142-4319. - STAMPA. - 36:(2015), pp. 11-23. [10.1007/s10974-014-9394-9]

Impact of tropomyosin isoform composition on fast skeletal muscle thin filament regulation and force development

SCELLINI, BEATRICE;PIRODDI, NICOLETTA;POGGESI, CORRADO;TESI, CHIARA
2015

Abstract

Tropomyosin (Tm) plays a central role in the regulation of muscle contraction and is present in three main isoforms in skeletal and cardiac muscles. In the present work we studied the functional role of α- and βTm on force development by modifying the isoform composition of rabbit psoas skeletal muscle myofibrils and of regulated thin filaments for in vitro motility measurements. Skeletal myofibril regulatory proteins were extracted (78%) and replaced (98%) with Tm isoforms as homogenous ααTm or ββTm dimers and the functional effects were measured. Maximal Ca(2+) activated force was the same in ααTm versus ββTm myofibrils, but ββTm myofibrils showed a marked slowing of relaxation and an impairment of regulation under resting conditions compared to ααTm and controls. ββTm myofibrils also showed a significantly shorter slack sarcomere length and a marked increase in resting tension. Both these mechanical features were almost completely abolished by 10 mM 2,3-butanedione 2-monoxime, suggesting the presence of a significant degree of Ca(2+)-independent cross-bridge formation in ββTm myofibrils. Finally, in motility assay experiments in the absence of Ca(2+) (pCa 9.0), complete regulation of thin filaments required greater ββTm versus ααTm concentrations, while at full activation (pCa 5.0) no effect was observed on maximal thin filament motility speed. We infer from these observations that high contents of ββTm in skeletal muscle result in partial Ca(2+)-independent activation of thin filaments at rest, and longer-lasting and less complete tension relaxation following Ca(2+) removal.
2015
36
11
23
Goal 3: Good health and well-being for people
Scellini, B; Piroddi, N.; Flint, G.V.; Regnier, M.; Poggesi, C.; Tesi, C.
File in questo prodotto:
File Dimensione Formato  
Scellini 2015.pdf

Accesso chiuso

Descrizione: Articolo principale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.29 MB
Formato Adobe PDF
1.29 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1010405
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact