We study the existence of positive solutions on the positive half-line for a nonlinear second order differential equation satisfying Dirichlet type conditions, say x(0) = 0, lim x(t) = 0 as t goes to infinity. The weight function is allowed to change sign and the nonlinearity is assumed to be asymptotically linear in a neighborhood of zero and infnity. Our results cover also the cases in which the weight is a periodic function for large t or it is unbounded from below.

A Dirichlet problem on the half-line for nonlinear equations with indefinite weight / Dosla, Zuzana; Marini, Mauro; Serena, Matucci. - In: ANNALI DI MATEMATICA PURA ED APPLICATA. - ISSN 1618-1891. - STAMPA. - 196:(2017), pp. 51-64. [10.1007/s10231-016-0562-y]

A Dirichlet problem on the half-line for nonlinear equations with indefinite weight

MARINI, MAURO;MATUCCI, SERENA
2017

Abstract

We study the existence of positive solutions on the positive half-line for a nonlinear second order differential equation satisfying Dirichlet type conditions, say x(0) = 0, lim x(t) = 0 as t goes to infinity. The weight function is allowed to change sign and the nonlinearity is assumed to be asymptotically linear in a neighborhood of zero and infnity. Our results cover also the cases in which the weight is a periodic function for large t or it is unbounded from below.
2017
196
51
64
Dosla, Zuzana; Marini, Mauro; Serena, Matucci
File in questo prodotto:
File Dimensione Formato  
39-AMPA.pdf

Accesso chiuso

Descrizione: versione dell'editore
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 509.83 kB
Formato Adobe PDF
509.83 kB Adobe PDF   Richiedi una copia
DMM_2015-rev.pdf

Open Access dal 02/01/2018

Descrizione: post-print dell'autore
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Open Access
Dimensione 280.91 kB
Formato Adobe PDF
280.91 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1012570
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact