Il mercato del solare termodinamico offre varie soluzioni tecnologiche e impiantistiche in funzione dei livelli di temperatura che si vogliono ottenere. Le esigenze energetiche nei vari settori industriale, residenziale e commerciale, però, spingono il mercato verso i collettori solari capaci di operare con rendimenti maggiori del 50% a temperature superiori a 100 °C, fino anche a 250 °C (nel range cosiddetto “a media temperatura”'). In questo ambito, la tecnologia che dimostra di essere più matura per la penetrazione del mercato risulta essere quella dei collettori parabolici lineari (PTC), e in particolar modo quelli di piccola taglia. L'assorbitore solare riveste un ruolo di estrema importanza per il buon funzionamento dell'intero PTC. In particolare la scelta del coating superficiale per il tubo rappresenta un punto focale per lo sviluppo e l'ottimizzazione del sistema in termini tecnici ed economici. Per il raggiungimento degli obiettivi è necessario orientarsi verso soluzioni tecnologiche che abbiano proprietà chimiche, fisiche e ottiche tali da garantire elevate prestazioni in termini di efficienza energetica e stabilità nel tempo alle temperature di esercizio desiderate. I coatings a base di cromo nero presentano ottime caratteristiche ottiche (α≈0.90-0.92; εT≈0.10-0.15) e risultano essere stabili anche fino a 300 °C. Il più grande problema legato alla realizzazione di rivestimenti cromati è legato all'inquinamento conseguente all'utilizzo nel bagno elettrolitico di ossidi di cromo esavalente. Agli inizi del nuovo secolo, con l'avvento di nuove soluzioni chimiche meno inquinanti per la produzione di oggetti cromati e con il crescente interesse verso i collettori solari piani, le tecniche galvaniche hanno trovato largo uso nella produzione di impianti solari termodinamici. L'assorbitore che è stato studiato è un assorbitore a base di cromo nero, e questo rientra nella categoria dei “tandem-absorber”: lo studio è cominciato quindi dal substrato. Lo studio del substrato ha portato alla comprensione delle caratteristiche che questo deve possedere e quali sono le condizioni operative per ottenerle. Il substrato per il cromo nero deve possedere appropriate caratteristiche ottiche, ovvero bassa emittanza, ma deve anche favorire la deposizione e l'adesione dell'assorbitore. I materiali candidati a questo scopo sono stati il nichel, ottenuto con due diversi processi di deposizione e il rame. Poiché questi tre materiali favoriscono egualmente deposizione ed adesione del cromo nero, è da preferire il materiale che garantisce la minore emittanza, ovvero il nichel ottenuto con il processo di deposizione di Watts (ε300 °C≈ 0.4). Si è mostrato inoltre, facendo chiarezza rispetto a quanto riportato in letteratura, come gli spessori dei substrati non influenzino le caratteristiche ottiche. Quindi al fine di contenere i costi di produzione è da preferire il minore spessore che garantisca una buona adesione del substrato e questo è stato individuato in uno spessore di 2 µm. Si sono poi trattate le caratteristiche ottiche dell'assorbitore, ponendo particolare attenzione al contesto in cui questo verrà utilizzato: infatti il parametro di selettività, comunemente utilizzato in letteratura per il confronto degli assorbitori solari selettivi, non fornisce indicazioni valide sul comportamento dell'assorbitore nell'impianto solare. Si è quindi introdotto il parametro di efficienza η che tiene conto delle condizioni in cui verrà impiegato l'assorbitore. Ipotizzando un plausibile caso di lavoro con temperatura di esercizio 300 °C e rapporto di concentrazione di 40, si è mostrato come sia necessario cercare di massimizzare l'assorbanza del materiale assorbitore al fine di ottimizzare l'efficienza, piuttosto che limitarne l'emittanza. L'analisi dei parametri di deposizione che ha portato a determinare l'insieme di condizioni da cui deriva la migliore efficienza ha mostrato la fondamentale importanza della composizione chimica del bagno galvanico: infatti, oltre alla presenza del costituente principale, ovvero il Cr+3, si è verificato il contributo determinante apportato dai ``catalizzatori''. Questi facilitano il trasporto dello ione principale in soluzione e la sua deposizione al catodo, limitando al contempo le reazioni collaterali. In questo modo si riesce ad ottenere il cromo nero con un miglioramento di η del 5-8 % ed a densità di corrente molto inferiori rispetto al caso in cui i catalizzatori non sono presenti. Densità di corrente e temperatura del bagno galvanico sono i parametri principali su cui operare. I migliori risultati sono stati ottenuti a 20 °C con una densità di corrente di 60 A dm-2. Il tempo della deposizione è molto importante: infatti, dagli studi condotti, il tempo ottimale di deposizione è 1 minuto, poiché sia per tempi minori che maggiori si ha un peggioramento dell'efficienza. Dall'analisi della superficie si è visto che il cromo nero è uno strato di materia soffice, non compatta, con aspetto estremamente frastagliato e composta da globuli di piccole dimensioni costituiti da un nucleo di cromo metallico circondato da uno strato di ossidi e idrossidi di cromo. L'aspetto della superficie influenza le caratteristiche ottiche del materiale: infatti esiste una correlazione tra la rugosità superficiale e α/εT secondo cui all'aumentare di Rz si ha una perdita di selettività. Numerose e importanti informazioni si sono ottenute dalla valutazione degli effetti provocati dai trattamenti termici: infatti per un assorbitore solare è di fondamentale importanza conoscere le caratteristiche ottiche alla temperatura di funzionamento. Il cromo nero analizzato è caratterizzato da un miglioramento della selettività dopo essere stato esposto alle alte temperature (300 °C e 400 °C) soprattutto nei casi in cui il substrato sia Ni Watts. Si è potuto valutare anche che il rame non è un buon substrato per applicazioni che possano trovarsi a temperature superiori ai 300 °C a causa della sua facile interdiffusione con altri metalli. L'esposizione dell'assorbitore alla temperatura di esercizio si comporta inoltre come una sorta di livellante nei confronti di η il cui valore medio si attesta a circa 0.8. Infatti il trattamento termico a 300 °C provoca un miglioramento delle efficienze degli assorbitori che inizialmente possedevano delle η abbastanza basse e un cambiamento esattamente opposto per gli assorbitori che appena deposti presentavano le migliori efficienze. La presenza dello ione fluoruro nella composizione del bagno galvanico comporta invece una minore resistenza dello strato assorbitore nei confronti della temperatura. Alla luce di queste considerazioni la composizione ottimale del bagno galvanico individuata è costituita da CrCl3·6H2O 266 g l-1, H2SiF6 10 g l-1, NaH2PO4 4 g l-1 e CoCl2 ·6H2O 15 g l-1 . Infine, nonostante in precedenza si sia individuato il miglior substrato in base alle sue caratteristiche ottiche, si è visto sperimentalmente come questo parametro non si rifletta in maniera determinante sull'efficienza finale. Infatti, come già detto, è importante massimizzare l'assorbimento piuttosto che limitare l'emissione dell'assorbitore. Per questo motivo e considerate le prove effettuate, si può affermare che i substrati considerati sono tra loro equivalenti. Alla luce di ciò il substrato più adatto è il nichel ottenuto con il metodo di Wood, poiché è quello che necessita di minor lavorazione e non presenta le limitazioni riguardo alle temperature di utilizzo viste per il rame. Il miglior campione ottenuto, che rispetta le condizioni appena elencate, presenta una efficienza di conversione energetica η=0.88: questo valore non è molto lontano, e talvolta migliore, delle efficienze dei ben più costosi CERMET (η=0.85-0.93), oltre ad essere migliore delle efficienze dei campioni ottenuti da cromo esavalente. ***************** The use of a low-intensity source like sunlight, for energy generation requires an efficient system to concentrate and capture radiation and to transfer the energy to the exchange fluid. Sunlight is abundant, renewable and free of charge. Therefore the development and diffusion of solar energy exploitation is a key issue for the future. However, at present solar energy technologies are generally affected by a not high enough efficiency and a high cost, making them not fully competitive yet over conventional fossil fuels. Thus, it is clear that both increasing the efficiency and reducing the cost is mandatory to promote solar energy exploitation. Systems operating at mid-temperatures (i.e. using fluids at about 200-300 °C) and in particular parabolic trough collectors (PTCs) offer several advantages in comparison with conventional flat plates thanks to their higher efficiency and reduced receiver surface. In these systems the incident solar radiation is converted into heat either by sunlight absorption by blackened or specially developed absorbing surfaces that collect the solar energy and transfer it to the fluid. Required characteristics for the absorber surface are chemical and physical stability at the operating temperatures, as well as good performances in terms of energy efficiency. Moreover a production process characterized by a low cost and a high repeatability should promote a large scale diffusion. Several direct industrial applications, like Direct Steam Generation (DSC) and Solar Heating and Cooling (SHC), could exploit mid-temperature solar energy as energy source. This interest drives the research of novel technologies focused on this market sector where the technologies developed for systems operating at higher temperatures (e.g. CSP plants) cannot be used. Electrodeposition techniques are a promising route to obtain surfaces with tailored optical characteristics. Black chrome coatings have excellent optical properties, as they are strongly absorbing in the sunlight spectral region, with a high absorbance α ≈ 0.90-0.92 and a low thermal emittance ε ≈ 0.10-0.15. Moreover they remain stable up to 300 °C. However, a relevant drawback correlated to chrome electrodeposition is represented by pollution derived from Cr6+ ions. Because of that, the technological development of these processes underwent a sharp slowdown since '90. Only with the advent of new studies about Cr3+ baths, since the beginning of 2000's, the electrodeposition processes have found new interest in mass production of components for thermal solar plants. To obtain a good coating by black chrome, a preliminary deposition of a nickel layer on the substrate is needed to ensure a better chrome adherence to the surface and an improved wear and corrosion resistance. Moreover this creates an ``absorber/reflector tandem'' having both the high solar absorbance of the black exterior deposit and the low thermal emittance of the metallic inner coating. The first step of this study was the investigation of structural features and optical properties of the nickel and copper surfaces, correlating them to coating thickness and deposition process, in the perspective to assess optimal conditions for solar absorber applications. The second step of this study was the investigation of structural features and optical properties of the black chrome absorber taking into account several bath's operational parameters. This black chrome was obtained by a solution of Cr+3. In order to compare the performance obtained by the materials in a working configuration has been paid attention to a parameter that can provide some information: this parameter is the efficiency η that take into account the working temperature and the concentration ratio. Moreover has been done several thermal aging cycle on the materials in order to predict the effect of the aging on the optical properties. The optimal set-up that has been found is: for a galvanic bath composition CrCl3·6H2O 266 g l-1, H2SiF6 10 g l-1, NaH2PO4 4 g l-1 and CoCl2 ·6H2O 15 g l-1; for the operational parameters 20 °C and current density of 60 A~dm-2. With this set-up the best result is a sample with η=0.88: this value is rather similar to the efficiency of the more expensive CERMET (η=0.85-0.93).

Sviluppo di un coating per assorbitore solare con tecnologie low cost / Pratesi, Stefano. - (2015).

Sviluppo di un coating per assorbitore solare con tecnologie low cost

PRATESI, STEFANO
2015

Abstract

Il mercato del solare termodinamico offre varie soluzioni tecnologiche e impiantistiche in funzione dei livelli di temperatura che si vogliono ottenere. Le esigenze energetiche nei vari settori industriale, residenziale e commerciale, però, spingono il mercato verso i collettori solari capaci di operare con rendimenti maggiori del 50% a temperature superiori a 100 °C, fino anche a 250 °C (nel range cosiddetto “a media temperatura”'). In questo ambito, la tecnologia che dimostra di essere più matura per la penetrazione del mercato risulta essere quella dei collettori parabolici lineari (PTC), e in particolar modo quelli di piccola taglia. L'assorbitore solare riveste un ruolo di estrema importanza per il buon funzionamento dell'intero PTC. In particolare la scelta del coating superficiale per il tubo rappresenta un punto focale per lo sviluppo e l'ottimizzazione del sistema in termini tecnici ed economici. Per il raggiungimento degli obiettivi è necessario orientarsi verso soluzioni tecnologiche che abbiano proprietà chimiche, fisiche e ottiche tali da garantire elevate prestazioni in termini di efficienza energetica e stabilità nel tempo alle temperature di esercizio desiderate. I coatings a base di cromo nero presentano ottime caratteristiche ottiche (α≈0.90-0.92; εT≈0.10-0.15) e risultano essere stabili anche fino a 300 °C. Il più grande problema legato alla realizzazione di rivestimenti cromati è legato all'inquinamento conseguente all'utilizzo nel bagno elettrolitico di ossidi di cromo esavalente. Agli inizi del nuovo secolo, con l'avvento di nuove soluzioni chimiche meno inquinanti per la produzione di oggetti cromati e con il crescente interesse verso i collettori solari piani, le tecniche galvaniche hanno trovato largo uso nella produzione di impianti solari termodinamici. L'assorbitore che è stato studiato è un assorbitore a base di cromo nero, e questo rientra nella categoria dei “tandem-absorber”: lo studio è cominciato quindi dal substrato. Lo studio del substrato ha portato alla comprensione delle caratteristiche che questo deve possedere e quali sono le condizioni operative per ottenerle. Il substrato per il cromo nero deve possedere appropriate caratteristiche ottiche, ovvero bassa emittanza, ma deve anche favorire la deposizione e l'adesione dell'assorbitore. I materiali candidati a questo scopo sono stati il nichel, ottenuto con due diversi processi di deposizione e il rame. Poiché questi tre materiali favoriscono egualmente deposizione ed adesione del cromo nero, è da preferire il materiale che garantisce la minore emittanza, ovvero il nichel ottenuto con il processo di deposizione di Watts (ε300 °C≈ 0.4). Si è mostrato inoltre, facendo chiarezza rispetto a quanto riportato in letteratura, come gli spessori dei substrati non influenzino le caratteristiche ottiche. Quindi al fine di contenere i costi di produzione è da preferire il minore spessore che garantisca una buona adesione del substrato e questo è stato individuato in uno spessore di 2 µm. Si sono poi trattate le caratteristiche ottiche dell'assorbitore, ponendo particolare attenzione al contesto in cui questo verrà utilizzato: infatti il parametro di selettività, comunemente utilizzato in letteratura per il confronto degli assorbitori solari selettivi, non fornisce indicazioni valide sul comportamento dell'assorbitore nell'impianto solare. Si è quindi introdotto il parametro di efficienza η che tiene conto delle condizioni in cui verrà impiegato l'assorbitore. Ipotizzando un plausibile caso di lavoro con temperatura di esercizio 300 °C e rapporto di concentrazione di 40, si è mostrato come sia necessario cercare di massimizzare l'assorbanza del materiale assorbitore al fine di ottimizzare l'efficienza, piuttosto che limitarne l'emittanza. L'analisi dei parametri di deposizione che ha portato a determinare l'insieme di condizioni da cui deriva la migliore efficienza ha mostrato la fondamentale importanza della composizione chimica del bagno galvanico: infatti, oltre alla presenza del costituente principale, ovvero il Cr+3, si è verificato il contributo determinante apportato dai ``catalizzatori''. Questi facilitano il trasporto dello ione principale in soluzione e la sua deposizione al catodo, limitando al contempo le reazioni collaterali. In questo modo si riesce ad ottenere il cromo nero con un miglioramento di η del 5-8 % ed a densità di corrente molto inferiori rispetto al caso in cui i catalizzatori non sono presenti. Densità di corrente e temperatura del bagno galvanico sono i parametri principali su cui operare. I migliori risultati sono stati ottenuti a 20 °C con una densità di corrente di 60 A dm-2. Il tempo della deposizione è molto importante: infatti, dagli studi condotti, il tempo ottimale di deposizione è 1 minuto, poiché sia per tempi minori che maggiori si ha un peggioramento dell'efficienza. Dall'analisi della superficie si è visto che il cromo nero è uno strato di materia soffice, non compatta, con aspetto estremamente frastagliato e composta da globuli di piccole dimensioni costituiti da un nucleo di cromo metallico circondato da uno strato di ossidi e idrossidi di cromo. L'aspetto della superficie influenza le caratteristiche ottiche del materiale: infatti esiste una correlazione tra la rugosità superficiale e α/εT secondo cui all'aumentare di Rz si ha una perdita di selettività. Numerose e importanti informazioni si sono ottenute dalla valutazione degli effetti provocati dai trattamenti termici: infatti per un assorbitore solare è di fondamentale importanza conoscere le caratteristiche ottiche alla temperatura di funzionamento. Il cromo nero analizzato è caratterizzato da un miglioramento della selettività dopo essere stato esposto alle alte temperature (300 °C e 400 °C) soprattutto nei casi in cui il substrato sia Ni Watts. Si è potuto valutare anche che il rame non è un buon substrato per applicazioni che possano trovarsi a temperature superiori ai 300 °C a causa della sua facile interdiffusione con altri metalli. L'esposizione dell'assorbitore alla temperatura di esercizio si comporta inoltre come una sorta di livellante nei confronti di η il cui valore medio si attesta a circa 0.8. Infatti il trattamento termico a 300 °C provoca un miglioramento delle efficienze degli assorbitori che inizialmente possedevano delle η abbastanza basse e un cambiamento esattamente opposto per gli assorbitori che appena deposti presentavano le migliori efficienze. La presenza dello ione fluoruro nella composizione del bagno galvanico comporta invece una minore resistenza dello strato assorbitore nei confronti della temperatura. Alla luce di queste considerazioni la composizione ottimale del bagno galvanico individuata è costituita da CrCl3·6H2O 266 g l-1, H2SiF6 10 g l-1, NaH2PO4 4 g l-1 e CoCl2 ·6H2O 15 g l-1 . Infine, nonostante in precedenza si sia individuato il miglior substrato in base alle sue caratteristiche ottiche, si è visto sperimentalmente come questo parametro non si rifletta in maniera determinante sull'efficienza finale. Infatti, come già detto, è importante massimizzare l'assorbimento piuttosto che limitare l'emissione dell'assorbitore. Per questo motivo e considerate le prove effettuate, si può affermare che i substrati considerati sono tra loro equivalenti. Alla luce di ciò il substrato più adatto è il nichel ottenuto con il metodo di Wood, poiché è quello che necessita di minor lavorazione e non presenta le limitazioni riguardo alle temperature di utilizzo viste per il rame. Il miglior campione ottenuto, che rispetta le condizioni appena elencate, presenta una efficienza di conversione energetica η=0.88: questo valore non è molto lontano, e talvolta migliore, delle efficienze dei ben più costosi CERMET (η=0.85-0.93), oltre ad essere migliore delle efficienze dei campioni ottenuti da cromo esavalente. ***************** The use of a low-intensity source like sunlight, for energy generation requires an efficient system to concentrate and capture radiation and to transfer the energy to the exchange fluid. Sunlight is abundant, renewable and free of charge. Therefore the development and diffusion of solar energy exploitation is a key issue for the future. However, at present solar energy technologies are generally affected by a not high enough efficiency and a high cost, making them not fully competitive yet over conventional fossil fuels. Thus, it is clear that both increasing the efficiency and reducing the cost is mandatory to promote solar energy exploitation. Systems operating at mid-temperatures (i.e. using fluids at about 200-300 °C) and in particular parabolic trough collectors (PTCs) offer several advantages in comparison with conventional flat plates thanks to their higher efficiency and reduced receiver surface. In these systems the incident solar radiation is converted into heat either by sunlight absorption by blackened or specially developed absorbing surfaces that collect the solar energy and transfer it to the fluid. Required characteristics for the absorber surface are chemical and physical stability at the operating temperatures, as well as good performances in terms of energy efficiency. Moreover a production process characterized by a low cost and a high repeatability should promote a large scale diffusion. Several direct industrial applications, like Direct Steam Generation (DSC) and Solar Heating and Cooling (SHC), could exploit mid-temperature solar energy as energy source. This interest drives the research of novel technologies focused on this market sector where the technologies developed for systems operating at higher temperatures (e.g. CSP plants) cannot be used. Electrodeposition techniques are a promising route to obtain surfaces with tailored optical characteristics. Black chrome coatings have excellent optical properties, as they are strongly absorbing in the sunlight spectral region, with a high absorbance α ≈ 0.90-0.92 and a low thermal emittance ε ≈ 0.10-0.15. Moreover they remain stable up to 300 °C. However, a relevant drawback correlated to chrome electrodeposition is represented by pollution derived from Cr6+ ions. Because of that, the technological development of these processes underwent a sharp slowdown since '90. Only with the advent of new studies about Cr3+ baths, since the beginning of 2000's, the electrodeposition processes have found new interest in mass production of components for thermal solar plants. To obtain a good coating by black chrome, a preliminary deposition of a nickel layer on the substrate is needed to ensure a better chrome adherence to the surface and an improved wear and corrosion resistance. Moreover this creates an ``absorber/reflector tandem'' having both the high solar absorbance of the black exterior deposit and the low thermal emittance of the metallic inner coating. The first step of this study was the investigation of structural features and optical properties of the nickel and copper surfaces, correlating them to coating thickness and deposition process, in the perspective to assess optimal conditions for solar absorber applications. The second step of this study was the investigation of structural features and optical properties of the black chrome absorber taking into account several bath's operational parameters. This black chrome was obtained by a solution of Cr+3. In order to compare the performance obtained by the materials in a working configuration has been paid attention to a parameter that can provide some information: this parameter is the efficiency η that take into account the working temperature and the concentration ratio. Moreover has been done several thermal aging cycle on the materials in order to predict the effect of the aging on the optical properties. The optimal set-up that has been found is: for a galvanic bath composition CrCl3·6H2O 266 g l-1, H2SiF6 10 g l-1, NaH2PO4 4 g l-1 and CoCl2 ·6H2O 15 g l-1; for the operational parameters 20 °C and current density of 60 A~dm-2. With this set-up the best result is a sample with η=0.88: this value is rather similar to the efficiency of the more expensive CERMET (η=0.85-0.93).
2015
Prof. Maurizio De Lucia, Dr.ssa Elisa Sani
ITALIA
Pratesi, Stefano
File in questo prodotto:
File Dimensione Formato  
PhD_Thesis_ING_IND_Stefano_Pratesi.pdf

accesso aperto

Descrizione: Tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Tutti i diritti riservati
Dimensione 6.41 MB
Formato Adobe PDF
6.41 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1015547
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact