Pulsed laser writing of graphitic electrodes in diamond is a promising technique for innovative particle detectors. Although of great relevance in 3D fabrication, the processes involved in sub-bandgap bulk irradiation are still not well understood. In this work, Raman imaging is exploited to correlate resistivity and graphitic content in 5–10 μm-thick electrodes, obtained both in the domains of femtoseconds and of nanoseconds of pulse duration. A wide interval of resistivities (60–900 mΩcm), according to the irradiation technique employed, are correlated with an sp2 content of the modified material ranging over a factor 2.5. The stress distribution (maximum of about 10 GPa) and the presence of nanostructured sp3 material around the graphitic columns have also been studied by Raman spectroscopy, and a rationale for the conductive behavior of the material is presented in terms of the thermodynamics of the process.

Electrical and Raman-imaging characterization of laser-made electrodes for 3D diamond detectors / Lagomarsino, S.; Bellini, M.; Corsi, C.; Fanetti, S.; Gorelli, F.; Liontos, I.; Parrini, G.; Santoro, M.; Sciortino, S.. - In: DIAMOND AND RELATED MATERIALS. - ISSN 0925-9635. - STAMPA. - 43:(2014), pp. 23-28. [10.1016/j.diamond.2014.01.002]

Electrical and Raman-imaging characterization of laser-made electrodes for 3D diamond detectors

LAGOMARSINO, STEFANO;CORSI, CHIARA;FANETTI, SAMUELE;LIONTOS, IOANNIS;PARRINI, GIULIANO;SCIORTINO, SILVIO
2014

Abstract

Pulsed laser writing of graphitic electrodes in diamond is a promising technique for innovative particle detectors. Although of great relevance in 3D fabrication, the processes involved in sub-bandgap bulk irradiation are still not well understood. In this work, Raman imaging is exploited to correlate resistivity and graphitic content in 5–10 μm-thick electrodes, obtained both in the domains of femtoseconds and of nanoseconds of pulse duration. A wide interval of resistivities (60–900 mΩcm), according to the irradiation technique employed, are correlated with an sp2 content of the modified material ranging over a factor 2.5. The stress distribution (maximum of about 10 GPa) and the presence of nanostructured sp3 material around the graphitic columns have also been studied by Raman spectroscopy, and a rationale for the conductive behavior of the material is presented in terms of the thermodynamics of the process.
2014
43
23
28
Lagomarsino, S.; Bellini, M.; Corsi, C.; Fanetti, S.; Gorelli, F.; Liontos, I.; Parrini, G.; Santoro, M.; Sciortino, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1016084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 54
social impact