Mild cognitive impairment (MCI) is a common condition in patients with diffuse hyperintensities of cerebral white matter (WM) in T2-weighted magnetic resonance images and cerebral small vessel disease (SVD). In MCI due to SVD, the most prominent feature of cognitive impairment lies in degradation of executive functions, i.e. of processes which supervise the organization and execution of complex behavior. The Trail Making Test (TMT) is a widely employed test sensitive to cognitive processing speed and executive functioning. MCI due to SVD has been hypothesized to be the effect of WM damage and diffusion tensor imaging (DTI) is a well-established technique for in-vivo characterization of WM. We propose a machine learning scheme tailored to 1) predicting the impairment in executive functions in patients with MCI and SVD, and 2) examining the brain substrates of this impairment. We employed data from 40 MCI patients with SVD and created feature vectors by averaging mean diffusivity (MD) and fractional anisotropy maps within 50 WM regions of interest. We trained support vector machines (SVMs) with polynomial as well as radial basis function kernels using different DTI-derived features while simultaneously optimizing parameters in leave-one-out nested crossvalidation. The best performance was obtained using MD features only and linear kernel SVMs, which were able to distinguish an impaired performance with high sensitivity (72.7%-89.5%), specificity (71.4%-83.3%) and accuracy (77.5%-80.0%). While brain substrates of executive functions are still debated, feature ranking confirm that MD in several WM regions, not limited to the frontal lobes, are truly predictive of executive functions.
Prediction of impaired performance in Trail Making Test in MCI patients with small vessel disease using DTI data / Ciulli, Stefano; Citi, Luca; Salvadori, Emilia; Valenti, Raffaella; Poggesi, Anna; Inzitari, Domenico; Mascalchi, Mario; Toschi, Nicola; Pantoni, Leonardo; Diciotti, Stefano. - In: IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS. - ISSN 2168-2194. - ELETTRONICO. - 20:(2016), pp. 1026-1033. [10.1109/JBHI.2016.2537808]
Prediction of impaired performance in Trail Making Test in MCI patients with small vessel disease using DTI data
CIULLI, STEFANO;SALVADORI, EMILIA;VALENTI, RAFFAELLA;POGGESI, ANNA;INZITARI, DOMENICO;MASCALCHI, MARIO;PANTONI, LEONARDO;DICIOTTI, STEFANO
2016
Abstract
Mild cognitive impairment (MCI) is a common condition in patients with diffuse hyperintensities of cerebral white matter (WM) in T2-weighted magnetic resonance images and cerebral small vessel disease (SVD). In MCI due to SVD, the most prominent feature of cognitive impairment lies in degradation of executive functions, i.e. of processes which supervise the organization and execution of complex behavior. The Trail Making Test (TMT) is a widely employed test sensitive to cognitive processing speed and executive functioning. MCI due to SVD has been hypothesized to be the effect of WM damage and diffusion tensor imaging (DTI) is a well-established technique for in-vivo characterization of WM. We propose a machine learning scheme tailored to 1) predicting the impairment in executive functions in patients with MCI and SVD, and 2) examining the brain substrates of this impairment. We employed data from 40 MCI patients with SVD and created feature vectors by averaging mean diffusivity (MD) and fractional anisotropy maps within 50 WM regions of interest. We trained support vector machines (SVMs) with polynomial as well as radial basis function kernels using different DTI-derived features while simultaneously optimizing parameters in leave-one-out nested crossvalidation. The best performance was obtained using MD features only and linear kernel SVMs, which were able to distinguish an impaired performance with high sensitivity (72.7%-89.5%), specificity (71.4%-83.3%) and accuracy (77.5%-80.0%). While brain substrates of executive functions are still debated, feature ranking confirm that MD in several WM regions, not limited to the frontal lobes, are truly predictive of executive functions.File | Dimensione | Formato | |
---|---|---|---|
Ciulli S, IEEE J Biomed Health Inform. 2016.pdf
Accesso chiuso
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
684.72 kB
Formato
Adobe PDF
|
684.72 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.