Protein misfolded proteins are among the most toxic endogenous species of macromolecules. These chemical entities are responsible for neurodegenerative disorders such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob's and different non-neurophatic amyloidosis. Notably, these oligomers show a combination of marked heterogeneity and low abundance in body fluids, which have prevented a reliable detection by immunological methods so far. Herein we exploit the selectivity of proteins to react with metallic ions and the sensitivity of surface-enhanced Raman spectroscopy (SERS) toward small electronic changes in coordination compounds to design and engineer a reliable optical sensor for protein misfolded oligomers. Our strategy relies on the functionalization of Au nanoparticle-decorated polystyrene beads with an effective metallorganic Raman chemoreceptor, composed by Al(3+) ions coordinated to 4-mercaptobenzoic acid (MBA) with high Raman cross-section, that selectively binds aberrant protein oligomers. The mechanical deformations of the MBA phenyl ring upon complexation with the oligomeric species are registered in its SERS spectrum and can be quantitatively correlated with the concentration of the target biomolecule. The SERS platform used here appears promising for future implementation of diagnostic tools of aberrant species associated with protein deposition diseases, including those with a strong social and economic impact, such as Alzheimer's and Parkinson's diseases.

SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads / Guerrini, Luca; Arenal, Raul; Mannini, Benedetta; Chiti, Fabrizio; Pini, Roberto; Matteini, Paolo; Alvarez-Puebla, Ramon A. - In: ACS APPLIED MATERIALS & INTERFACES. - ISSN 1944-8252. - STAMPA. - 7:(2015), pp. 9420-9428. [10.1021/acsami.5b01056]

SERS Detection of Amyloid Oligomers on Metallorganic-Decorated Plasmonic Beads

MANNINI, BENEDETTA;CHITI, FABRIZIO;PINI, ROBERTO;MATTEINI, PAOLO;
2015

Abstract

Protein misfolded proteins are among the most toxic endogenous species of macromolecules. These chemical entities are responsible for neurodegenerative disorders such as Alzheimer's, Parkinson's, Creutzfeldt-Jakob's and different non-neurophatic amyloidosis. Notably, these oligomers show a combination of marked heterogeneity and low abundance in body fluids, which have prevented a reliable detection by immunological methods so far. Herein we exploit the selectivity of proteins to react with metallic ions and the sensitivity of surface-enhanced Raman spectroscopy (SERS) toward small electronic changes in coordination compounds to design and engineer a reliable optical sensor for protein misfolded oligomers. Our strategy relies on the functionalization of Au nanoparticle-decorated polystyrene beads with an effective metallorganic Raman chemoreceptor, composed by Al(3+) ions coordinated to 4-mercaptobenzoic acid (MBA) with high Raman cross-section, that selectively binds aberrant protein oligomers. The mechanical deformations of the MBA phenyl ring upon complexation with the oligomeric species are registered in its SERS spectrum and can be quantitatively correlated with the concentration of the target biomolecule. The SERS platform used here appears promising for future implementation of diagnostic tools of aberrant species associated with protein deposition diseases, including those with a strong social and economic impact, such as Alzheimer's and Parkinson's diseases.
2015
7
9420
9428
Guerrini, Luca; Arenal, Raul; Mannini, Benedetta; Chiti, Fabrizio; Pini, Roberto; Matteini, Paolo; Alvarez-Puebla, Ramon A
File in questo prodotto:
File Dimensione Formato  
Guerrini et al. 2015.pdf

Accesso chiuso

Descrizione: file pdf del prodotto
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.66 MB
Formato Adobe PDF
2.66 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1042292
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 86
  • ???jsp.display-item.citation.isi??? 82
social impact