It is well known that an integral of the Calculus of Variations satisfying anisotropic growth conditions may have unbounded minimizers if the growth exponents are too far apart. Under sharp assumptions on the exponents we prove the local boundedness of minimizers of functionals with anisotropic p,q-growth, via the De Giorgi method. As a by-product, regularity of minimizers of some non coercive functionals is obtained by reduction to coercive ones.

Regularity of minimizers under limit growth conditions / Cupini, Giovanni; Marcellini, Paolo; Mascolo, Elvira. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 153:(2017), pp. 294-310. [10.1016/j.na.2016.06.002]

Regularity of minimizers under limit growth conditions

Cupini, Giovanni;MARCELLINI, PAOLO;MASCOLO, ELVIRA
2017

Abstract

It is well known that an integral of the Calculus of Variations satisfying anisotropic growth conditions may have unbounded minimizers if the growth exponents are too far apart. Under sharp assumptions on the exponents we prove the local boundedness of minimizers of functionals with anisotropic p,q-growth, via the De Giorgi method. As a by-product, regularity of minimizers of some non coercive functionals is obtained by reduction to coercive ones.
2017
153
294
310
Cupini, Giovanni; Marcellini, Paolo; Mascolo, Elvira
File in questo prodotto:
File Dimensione Formato  
2017_Cupini_Marcellini_Mascolo_Nonlinear_Analysis.pdf

Accesso chiuso

Descrizione: reprint (post-print)
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 677.73 kB
Formato Adobe PDF
677.73 kB Adobe PDF   Richiedi una copia
CupMarMas-2016-05-31.pdf

accesso aperto

Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 334.45 kB
Formato Adobe PDF
334.45 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1048926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 45
  • ???jsp.display-item.citation.isi??? 44
social impact