In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the numerical solution of such problems.

Recent Advances in the Numerical Solution of Hamiltonian Partial Differential Equations / Barletti, Luigi; Brugnano, Luigi; Frasca Caccia Gianluca; Iavernaro, Felice. - ELETTRONICO. - 1776:(2016), pp. 020002-1-020002-8. (Intervento presentato al convegno Numerical Computations: Theory and Algorithms - NUMTA 2016: The 2nd International Conference and Summer School tenutosi a Pizzo Calabro (Italy) nel June 19-25, 2016) [10.1063/1.4965308].

Recent Advances in the Numerical Solution of Hamiltonian Partial Differential Equations

BARLETTI, LUIGI;BRUGNANO, LUIGI;
2016

Abstract

In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the numerical solution of such problems.
2016
Proceedings NUMTA2016
Numerical Computations: Theory and Algorithms - NUMTA 2016: The 2nd International Conference and Summer School
Pizzo Calabro (Italy)
June 19-25, 2016
Barletti, Luigi; Brugnano, Luigi; Frasca Caccia Gianluca; Iavernaro, Felice
File in questo prodotto:
File Dimensione Formato  
Brugnano_AIP_NUMTA2016.pdf

accesso aperto

Descrizione: preprint
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.31 MB
Formato Adobe PDF
1.31 MB Adobe PDF
AIP Conf. Proc. 1776, 020002 (2016).pdf

Accesso chiuso

Descrizione: pdf editoriale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.33 MB
Formato Adobe PDF
1.33 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1056161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact