In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the numerical solution of such problems.
Recent Advances in the Numerical Solution of Hamiltonian Partial Differential Equations / Barletti, Luigi; Brugnano, Luigi; Frasca Caccia Gianluca; Iavernaro, Felice. - ELETTRONICO. - 1776:(2016), pp. 020002-1-020002-8. (Intervento presentato al convegno Numerical Computations: Theory and Algorithms - NUMTA 2016: The 2nd International Conference and Summer School tenutosi a Pizzo Calabro (Italy) nel June 19-25, 2016) [10.1063/1.4965308].
Recent Advances in the Numerical Solution of Hamiltonian Partial Differential Equations
BARLETTI, LUIGI;BRUGNANO, LUIGI;
2016
Abstract
In this paper, we study recent results in the numerical solution of Hamiltonian partial differential equations (PDEs), by means of energy-conserving methods in the class of Line Integral Methods, in particular, the Runge-Kutta methods named Hamiltonian Boundary Value Methods (HBVMs). We show that the use of energy-conserving methods, able to conserve a discrete counterpart of the Hamiltonian functional (which derives from a proper space semi-discretization), confers more robustness to the numerical solution of such problems.File | Dimensione | Formato | |
---|---|---|---|
Brugnano_AIP_NUMTA2016.pdf
accesso aperto
Descrizione: preprint
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | |
AIP Conf. Proc. 1776, 020002 (2016).pdf
Accesso chiuso
Descrizione: pdf editoriale
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.33 MB
Formato
Adobe PDF
|
1.33 MB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.