Histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMN) establish connections with virtually all brain areas. Recent evidence suggests that feeding-related motivation is correlated with the activation of a subpopulation of histamine neurons in the ventral TMN that project to hypothalamic and subcortical areas controlling feeding behaviour. Oleoylethanolamide (OEA) is a hypophagic lipid-amide released by the small intestine in response to daily fat intake that indirectly activates hypothalamic oxytocin-neurons in the paraventricular (PVN) and supraoptic (SON) nuclei. We recently showed that OEA requires the integrity of neuronal histamine to fully display its hypophagic effect. Here we aimed to investigate if differences exist in OEA-induced c-Fos expression in several brain regions of fasted, histidine decarboxylase (HDC)-KO mice that do not synthesize histamine, and wild type (WT) littermates. All the brain regions examined receive histaminergic innervation and are involved in different aspects of feeding behaviour. We found that OEA increased c-Fos expression in the SON, arcuate nucleus (ARC) and the amygdala of WT mice, but not HDC-KO mice, whereas neither genotype nor treatment differences were observed in the lateral and dorsomedial hypothalamus. Furthermore, oxytocin-immunostaining was markedly increased in the neurohypophysis of WT and not in HDC-KO mice. Of note, OEA increased c-Fos expression in the nucleus of solitary tract of both genotypes. Our findings suggest that the TMN serves as a relay station to elaborate peripheral signals that control homeostatic and adaptive behavioural responses.

The hypophagic factor oleoylethanolamide differentially increases c-fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice / Hayato Umehara, Roberta Fabbri, Gustavo Provensi, Maria Beatrice Passani. - In: PHARMACOLOGICAL RESEARCH. - ISSN 1043-6618. - ELETTRONICO. - 113:(2016), pp. 100-107. [10.1016/j.phrs.2016.08.020]

The hypophagic factor oleoylethanolamide differentially increases c-fos expression in appetite regulating centres in the brain of wild type and histamine deficient mice

Roberta Fabbri;Gustavo Provensi;Maria Beatrice Passani
2016

Abstract

Histaminergic neurons in the hypothalamic tuberomamillary nucleus (TMN) establish connections with virtually all brain areas. Recent evidence suggests that feeding-related motivation is correlated with the activation of a subpopulation of histamine neurons in the ventral TMN that project to hypothalamic and subcortical areas controlling feeding behaviour. Oleoylethanolamide (OEA) is a hypophagic lipid-amide released by the small intestine in response to daily fat intake that indirectly activates hypothalamic oxytocin-neurons in the paraventricular (PVN) and supraoptic (SON) nuclei. We recently showed that OEA requires the integrity of neuronal histamine to fully display its hypophagic effect. Here we aimed to investigate if differences exist in OEA-induced c-Fos expression in several brain regions of fasted, histidine decarboxylase (HDC)-KO mice that do not synthesize histamine, and wild type (WT) littermates. All the brain regions examined receive histaminergic innervation and are involved in different aspects of feeding behaviour. We found that OEA increased c-Fos expression in the SON, arcuate nucleus (ARC) and the amygdala of WT mice, but not HDC-KO mice, whereas neither genotype nor treatment differences were observed in the lateral and dorsomedial hypothalamus. Furthermore, oxytocin-immunostaining was markedly increased in the neurohypophysis of WT and not in HDC-KO mice. Of note, OEA increased c-Fos expression in the nucleus of solitary tract of both genotypes. Our findings suggest that the TMN serves as a relay station to elaborate peripheral signals that control homeostatic and adaptive behavioural responses.
2016
113
100
107
Goal 3: Good health and well-being for people
Hayato Umehara, Roberta Fabbri, Gustavo Provensi, Maria Beatrice Passani
File in questo prodotto:
File Dimensione Formato  
Umehara 2016.pdf

Accesso chiuso

Descrizione: Articolo rivista internazionale
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 2.96 MB
Formato Adobe PDF
2.96 MB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1057841
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact