This paper introduces theories for arithmetical quasi-inductive definitions (Burgess, 1986) as it has been done for first-order monotone and nonmonotone inductive ones. After displaying the basic axiomatic framework, we provide some initial result in the proof theoretic bounds line of research (the upper one being given in terms of a theory of sets extending Kripke–Platek set theory).

A Note on Theories for Quasi-Inductive Definitions / Bruni, Riccardo. - In: THE REVIEW OF SYMBOLIC LOGIC. - ISSN 1755-0203. - STAMPA. - 2:(2009), pp. 684-699. [10.1017/S175502030909025X]

A Note on Theories for Quasi-Inductive Definitions

BRUNI, RICCARDO
2009

Abstract

This paper introduces theories for arithmetical quasi-inductive definitions (Burgess, 1986) as it has been done for first-order monotone and nonmonotone inductive ones. After displaying the basic axiomatic framework, we provide some initial result in the proof theoretic bounds line of research (the upper one being given in terms of a theory of sets extending Kripke–Platek set theory).
2009
2
684
699
Bruni, Riccardo
File in questo prodotto:
File Dimensione Formato  
9_RBRUNI_RSL.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 489.25 kB
Formato Adobe PDF
489.25 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1068704
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 1
social impact