We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.

A generalized Korn inequality and strong unique continuation for the Reissner-Mindlin plate system / Morassi, Antonino; Rosset, Edi; Vessella, Sergio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 263:(2017), pp. 811-840. [10.1016/j.jde.2017.02.055]

A generalized Korn inequality and strong unique continuation for the Reissner-Mindlin plate system.

VESSELLA, SERGIO
2017

Abstract

We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.
2017
263
811
840
Morassi, Antonino; Rosset, Edi; Vessella, Sergio
File in questo prodotto:
File Dimensione Formato  
Morassi_Rosset_Vessella_Mindlin_jde.pdf

accesso aperto

Descrizione: file pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 347.74 kB
Formato Adobe PDF
347.74 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1087128
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact