We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.
A generalized Korn inequality and strong unique continuation for the Reissner-Mindlin plate system / Morassi, Antonino; Rosset, Edi; Vessella, Sergio. - In: JOURNAL OF DIFFERENTIAL EQUATIONS. - ISSN 0022-0396. - STAMPA. - 263:(2017), pp. 811-840. [10.1016/j.jde.2017.02.055]
A generalized Korn inequality and strong unique continuation for the Reissner-Mindlin plate system.
VESSELLA, SERGIO
2017
Abstract
We prove constructive estimates for elastic plates modeledby the Reissner–Mindlin theory and made by general anisotropic material. Namely, we obtain a generalized Korn inequality which allows to derive quantitative stability and global H^2 regularity for the Neumann problem. Moreover, in case of isotropic material, we derive an interior three spheres inequality with optimal exponent from which the strong unique continuation property follows.File | Dimensione | Formato | |
---|---|---|---|
Morassi_Rosset_Vessella_Mindlin_jde.pdf
accesso aperto
Descrizione: file pdf
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
347.74 kB
Formato
Adobe PDF
|
347.74 kB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.