The market globalisation and the climate change are contributing substantially to the possible and rapid spread of alien and invasive plant pathogens in areas where they were previously absent, or are intensifying the incidence and severity of endemic pathogens, thus contributing significantly to increase the possible threats to the agricultural sector. Moreover, the lack of effective alternative molecules to copper compounds in plant protection, whose negative effects on both human health and environmental protection, have been neglected for far too long, and the need to adapt to European legislation, have led the operators in plant protection sector to reflect about the urgent need to implement a cultural revolution in which major innovation efforts are required. The study was carried out in order to achieve the following main aims: I) analysing pathogenic and virulence systems of phytopathogenic Gram-negative bacteria such as the Type Three Secretion System (TTSS), and in particular the main structural protein of TTSS pilus, i.e. “HrpA”, in order to design molecules able to block the pathogenicity and virulence of these bacteria without undermining their viability; II) verifying the in vitro and in vivo efficacy of anti-infective molecules, such as small oligopeptides and polyphenolic extracts obtained in a circular economy framework, to reduce or to block symptoms development caused by plant pathogenic bacteria; finally, as a future objective to analyse a possible correlation among virulence systems, fitness and efflux pumps related to xenobiotic compounds extrusion in phytopathogenic bacteria, in order to identify underdeveloped targets, against which innovative molecules can be designed.

Anti-infective environmentally friendly molecules against plant pathogenic Gram-negative bacteria / Carola Biancalani. - (2017).

Anti-infective environmentally friendly molecules against plant pathogenic Gram-negative bacteria

BIANCALANI, CAROLA
2017

Abstract

The market globalisation and the climate change are contributing substantially to the possible and rapid spread of alien and invasive plant pathogens in areas where they were previously absent, or are intensifying the incidence and severity of endemic pathogens, thus contributing significantly to increase the possible threats to the agricultural sector. Moreover, the lack of effective alternative molecules to copper compounds in plant protection, whose negative effects on both human health and environmental protection, have been neglected for far too long, and the need to adapt to European legislation, have led the operators in plant protection sector to reflect about the urgent need to implement a cultural revolution in which major innovation efforts are required. The study was carried out in order to achieve the following main aims: I) analysing pathogenic and virulence systems of phytopathogenic Gram-negative bacteria such as the Type Three Secretion System (TTSS), and in particular the main structural protein of TTSS pilus, i.e. “HrpA”, in order to design molecules able to block the pathogenicity and virulence of these bacteria without undermining their viability; II) verifying the in vitro and in vivo efficacy of anti-infective molecules, such as small oligopeptides and polyphenolic extracts obtained in a circular economy framework, to reduce or to block symptoms development caused by plant pathogenic bacteria; finally, as a future objective to analyse a possible correlation among virulence systems, fitness and efflux pumps related to xenobiotic compounds extrusion in phytopathogenic bacteria, in order to identify underdeveloped targets, against which innovative molecules can be designed.
2017
Stefania Tegli, Stefano Biricolti
ITALIA
Carola Biancalani
File in questo prodotto:
File Dimensione Formato  
PhD thesis Carola Biancalani.pdf

accesso aperto

Descrizione: tesi di dottorato
Tipologia: Tesi di dottorato
Licenza: Open Access
Dimensione 7.55 MB
Formato Adobe PDF
7.55 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1087786
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact