We model the axisymmetric unidirectional flow of a Herschel–Bulkley fluid with rheological parameters that depend linearly on pressure. Adopting an appropriate scaling, we formulate the mathematical problem in cylindrical geometry exploiting an integral formulation for the momentum equation in the unyielded part. We prove that, under suitable assumptions on the data of the problem, explicit solutions can be determined. In particular, we determine the position of the yield surface together with the pressure and velocity profiles. With the aid of some plots, we finally discuss the dependence of the solution on the physical parameters of the problem.

Creeping flow of a Herschel-Bulkley fluid with pressure-dependent material moduli / Fusi, L; Rosso, F.. - In: EUROPEAN JOURNAL OF APPLIED MATHEMATICS. - ISSN 0956-7925. - ELETTRONICO. - ...:(2018), pp. 352-368. [10.1017/S0956792517000183]

Creeping flow of a Herschel-Bulkley fluid with pressure-dependent material moduli

FUSI, LORENZO;ROSSO, FABIO
2018

Abstract

We model the axisymmetric unidirectional flow of a Herschel–Bulkley fluid with rheological parameters that depend linearly on pressure. Adopting an appropriate scaling, we formulate the mathematical problem in cylindrical geometry exploiting an integral formulation for the momentum equation in the unyielded part. We prove that, under suitable assumptions on the data of the problem, explicit solutions can be determined. In particular, we determine the position of the yield surface together with the pressure and velocity profiles. With the aid of some plots, we finally discuss the dependence of the solution on the physical parameters of the problem.
2018
...
352
368
Fusi, L; Rosso, F.
File in questo prodotto:
File Dimensione Formato  
04_2018_EJAM_Herschel.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 1.91 MB
Formato Adobe PDF
1.91 MB Adobe PDF   Richiedi una copia
04_fusi_rosso_EJAM.pdf

accesso aperto

Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 2.03 MB
Formato Adobe PDF
2.03 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1092600
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact