We model the axisymmetric unidirectional flow of a Herschel–Bulkley fluid with rheological parameters that depend linearly on pressure. Adopting an appropriate scaling, we formulate the mathematical problem in cylindrical geometry exploiting an integral formulation for the momentum equation in the unyielded part. We prove that, under suitable assumptions on the data of the problem, explicit solutions can be determined. In particular, we determine the position of the yield surface together with the pressure and velocity profiles. With the aid of some plots, we finally discuss the dependence of the solution on the physical parameters of the problem.
Creeping flow of a Herschel-Bulkley fluid with pressure-dependent material moduli / Fusi, L; Rosso, F.. - In: EUROPEAN JOURNAL OF APPLIED MATHEMATICS. - ISSN 0956-7925. - ELETTRONICO. - ...:(2018), pp. 352-368. [10.1017/S0956792517000183]
Creeping flow of a Herschel-Bulkley fluid with pressure-dependent material moduli
FUSI, LORENZO;ROSSO, FABIO
2018
Abstract
We model the axisymmetric unidirectional flow of a Herschel–Bulkley fluid with rheological parameters that depend linearly on pressure. Adopting an appropriate scaling, we formulate the mathematical problem in cylindrical geometry exploiting an integral formulation for the momentum equation in the unyielded part. We prove that, under suitable assumptions on the data of the problem, explicit solutions can be determined. In particular, we determine the position of the yield surface together with the pressure and velocity profiles. With the aid of some plots, we finally discuss the dependence of the solution on the physical parameters of the problem.File | Dimensione | Formato | |
---|---|---|---|
04_2018_EJAM_Herschel.pdf
Accesso chiuso
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
1.91 MB
Formato
Adobe PDF
|
1.91 MB | Adobe PDF | Richiedi una copia |
04_fusi_rosso_EJAM.pdf
accesso aperto
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
2.03 MB
Formato
Adobe PDF
|
2.03 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.