In 1974, Helmut Wielandt proved that in a finite group G, a subgroup A is subnormal if and only if it is subnormal in 〈A,g〉 for all g∈G. In this paper, we prove that the subnormality of an odd order nilpotent subgroup A of G is already guaranteed by a seemingly weaker condition: A is subnormal in G if for every conjugacy class C of G there exists c∈C for which A is subnormal in 〈A,c〉. We also prove the following property of finite non-abelian simple groups: if A is a subgroup of odd prime order p in a finite almost simple group G, then there exists a cyclic p′-subgroup of F^⁎(G) which does not normalise any non-trivial p-subgroup of G that is generated by conjugates of A.

A generalisation of a theorem of Wielandt / Fumagalli, Francesco; Malle, Gunter. - In: JOURNAL OF ALGEBRA. - ISSN 0021-8693. - STAMPA. - 490:(2017), pp. 474-492. [10.1016/j.jalgebra.2017.07.006]

A generalisation of a theorem of Wielandt

FUMAGALLI, FRANCESCO;
2017

Abstract

In 1974, Helmut Wielandt proved that in a finite group G, a subgroup A is subnormal if and only if it is subnormal in 〈A,g〉 for all g∈G. In this paper, we prove that the subnormality of an odd order nilpotent subgroup A of G is already guaranteed by a seemingly weaker condition: A is subnormal in G if for every conjugacy class C of G there exists c∈C for which A is subnormal in 〈A,c〉. We also prove the following property of finite non-abelian simple groups: if A is a subgroup of odd prime order p in a finite almost simple group G, then there exists a cyclic p′-subgroup of F^⁎(G) which does not normalise any non-trivial p-subgroup of G that is generated by conjugates of A.
2017
490
474
492
Fumagalli, Francesco; Malle, Gunter
File in questo prodotto:
File Dimensione Formato  
Fumagalli_Malle - A generalisation of a theorem of Wielandt.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 265.85 kB
Formato Adobe PDF
265.85 kB Adobe PDF
Fumagalli_Malle.pdf

Accesso chiuso

Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 446.91 kB
Formato Adobe PDF
446.91 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1094686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact