Integrals of the Calculus of Variations with p,q-growth may have not smooth minimizers, not even bounded, for general p,q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one, allows us not to impose structure conditions on the integrand f(x,ξ) with dependence on the modulus of the gradient i.e. f(x,ξ)=g(x,|ξ|). Without imposing structure conditions, we prove that if (q/p) is sufficiently close to 1 then every minimizer is locally Lipschitz-continuous.
Regularity for scalar integrals without structure conditions / Eleuteri, Michela; Marcellini, Paolo; Mascolo, Elvira. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8266. - STAMPA. - 13:(2020), pp. 279-300. [10.1515/acv-2017-0037]
Regularity for scalar integrals without structure conditions
MARCELLINI, PAOLO
;MASCOLO, ELVIRA
2020
Abstract
Integrals of the Calculus of Variations with p,q-growth may have not smooth minimizers, not even bounded, for general p,q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one, allows us not to impose structure conditions on the integrand f(x,ξ) with dependence on the modulus of the gradient i.e. f(x,ξ)=g(x,|ξ|). Without imposing structure conditions, we prove that if (q/p) is sufficiently close to 1 then every minimizer is locally Lipschitz-continuous.File | Dimensione | Formato | |
---|---|---|---|
2020_Eleuteri_Marcellini_Mascolo_Advances in Calculus of Variations_reprint.pdf
Accesso chiuso
Descrizione: reprint
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Tutti i diritti riservati
Dimensione
731.72 kB
Formato
Adobe PDF
|
731.72 kB | Adobe PDF | Richiedi una copia |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.