Integrals of the Calculus of Variations with p,q-growth may have not smooth minimizers, not even bounded, for general p,q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one, allows us not to impose structure conditions on the integrand f(x,ξ) with dependence on the modulus of the gradient i.e. f(x,ξ)=g(x,|ξ|). Without imposing structure conditions, we prove that if (q/p) is sufficiently close to 1 then every minimizer is locally Lipschitz-continuous.

Regularity for scalar integrals without structure conditions / Eleuteri, Michela; Marcellini, Paolo; Mascolo, Elvira. - In: ADVANCES IN CALCULUS OF VARIATIONS. - ISSN 1864-8266. - STAMPA. - 13:(2020), pp. 279-300. [10.1515/acv-2017-0037]

Regularity for scalar integrals without structure conditions

MARCELLINI, PAOLO
;
MASCOLO, ELVIRA
2020

Abstract

Integrals of the Calculus of Variations with p,q-growth may have not smooth minimizers, not even bounded, for general p,q exponents. In this paper we consider the scalar case, which contrary to the vector-valued one, allows us not to impose structure conditions on the integrand f(x,ξ) with dependence on the modulus of the gradient i.e. f(x,ξ)=g(x,|ξ|). Without imposing structure conditions, we prove that if (q/p) is sufficiently close to 1 then every minimizer is locally Lipschitz-continuous.
2020
13
279
300
Goal 9: Industry, Innovation, and Infrastructure
Eleuteri, Michela; Marcellini, Paolo; Mascolo, Elvira
File in questo prodotto:
File Dimensione Formato  
2020_Eleuteri_Marcellini_Mascolo_Advances in Calculus of Variations_reprint.pdf

Accesso chiuso

Descrizione: reprint
Tipologia: Pdf editoriale (Version of record)
Licenza: Tutti i diritti riservati
Dimensione 731.72 kB
Formato Adobe PDF
731.72 kB Adobe PDF   Richiedi una copia

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1100989
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 67
  • ???jsp.display-item.citation.isi??? 55
social impact