The Khatyrka meteorite contains both icosahedral and decagonal quasicrystals. In our previous studies, icosahedral quasicrystals have been synthesized and recovered from shock experiments at the interface between CuAl5 and stainless steel 304 alloys. In this study, we report a new shock recovery experiment aimed at synthesizing decagonal quasicrystals similar to decagonite, natural Al71Ni24Fe5. Aluminum 2024 and permalloy 80 alloys were stacked together and shocked in a stainless steel 304 recovery chamber. Abundant decagonal quasicrystals of average composition Al73Ni19Fe4Cu2Mg0.6Mo0.4Mn0.3 with traces of Si and Cr were found along the recovered interface between the Al and permalloy. The experiment also synthesized AlNiFe alloy with the B2 (CsCl-type) structure and the metastable Al9Ni2 phase. We present chemical (scanning electron microscopy and electron microprobe) and structural (electron backscatter diffraction and transmission electron microscopy) characterization of the recovered phases and discuss the implications of this shock synthesis for the stability of quasicrystals during high-pressure shocks and for the interpretation of the phase assemblage found in Khatyrka.

Shock Synthesis of Decagonal Quasicrystals / Oppenheim, J.; Ma, C.; Hu, J.; Bindi, Luca; Steinhardt, P. J.; Asimow, P. D.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:(2017), pp. 1-12. [10.1038/s41598-017-15229-4]

Shock Synthesis of Decagonal Quasicrystals

L. Bindi;
2017

Abstract

The Khatyrka meteorite contains both icosahedral and decagonal quasicrystals. In our previous studies, icosahedral quasicrystals have been synthesized and recovered from shock experiments at the interface between CuAl5 and stainless steel 304 alloys. In this study, we report a new shock recovery experiment aimed at synthesizing decagonal quasicrystals similar to decagonite, natural Al71Ni24Fe5. Aluminum 2024 and permalloy 80 alloys were stacked together and shocked in a stainless steel 304 recovery chamber. Abundant decagonal quasicrystals of average composition Al73Ni19Fe4Cu2Mg0.6Mo0.4Mn0.3 with traces of Si and Cr were found along the recovered interface between the Al and permalloy. The experiment also synthesized AlNiFe alloy with the B2 (CsCl-type) structure and the metastable Al9Ni2 phase. We present chemical (scanning electron microscopy and electron microprobe) and structural (electron backscatter diffraction and transmission electron microscopy) characterization of the recovered phases and discuss the implications of this shock synthesis for the stability of quasicrystals during high-pressure shocks and for the interpretation of the phase assemblage found in Khatyrka.
2017
7
1
12
Oppenheim, J.; Ma, C.; Hu, J.; Bindi, Luca; Steinhardt, P. J.; Asimow, P. D.
File in questo prodotto:
File Dimensione Formato  
Oppenheim et al_2017_AlNiFe.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 3.49 MB
Formato Adobe PDF
3.49 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1102419
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact