The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.
Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model / Maggini, V.; De Leo, M.; Mengoni, A.; Gallo, E. R.; Miceli, E.; Bandeira Reidel, R. V.; Biffi, S.; Pistelli, L.; Fani, R.; Firenzuoli, F.; Bogani, P.. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:(2017), pp. 16924-16931. [10.1038/s41598-017-17110-w]
Plant-endophytes interaction influences the secondary metabolism in Echinacea purpurea (L.) Moench: an in vitro model
Maggini, V.
;Mengoni, A.;Gallo, E. R.;Biffi, S.;Fani, R.;Firenzuoli, F.;Bogani, P.
2017
Abstract
The influence of the interaction(s) between the medicinal plant Echinacea purpurea (L.) Moench and its endophytic communities on the production of alkamides is investigated. To mimic the in vivo conditions, we have set up an infection model of axenic in vitro E. purpurea plants inoculated with a pool of bacterial strains isolated from the E. purpurea stems and leaves. Here we show different alkamide levels between control (not-inoculated) and inoculated plants, suggesting that the alkamide biosynthesis may be modulated by the bacterial infection. Then, we have analysed the branched-chain amino acids (BCCA) decarboxylase gene (GenBank Accession #LT593930; the enzymatic source for the amine moiety formation of the alkamides) expression patterns. The expression profile shows a higher expression level in the inoculated E. purpurea tissues than in the control ones. These results suggest that the plant-endophyte interaction can influence plant secondary metabolism affecting the therapeutic properties of E. purpurea.File | Dimensione | Formato | |
---|---|---|---|
Maggini et al - Scientific Reporst 2017 - Echinacea and endophytes.pdf
accesso aperto
Descrizione: Maggini et al - In vitro Echinacea and endophytes
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.05 MB
Formato
Adobe PDF
|
1.05 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.