The development of a methodology for the structural characterization at atomic detail of proteins conjugated to nanoparticles would be a breakthrough in nanotechnology. Solution and solid-state NMR spectroscopies are currently used to investigate molecules and peptides grafted onto nanoparticles, but the strategies used so far fall short in the application to proteins, which represent a thrilling development in theranostics. We here demonstrate the feasibility of highly-resolved multidimensional heteronuclear spectra of a large protein assembly conjugated to PEGylated gold nanoparticles. The spectra have been obtained by direct proton detection under fast MAS and allow for both a fast fingerprinting for the assessment of the preservation of the native fold and for resonance assignment. We thus demonstrate that the structural characterization and the application of the structure-based methodologies to proteins bound to gold nanoparticles is feasible and potentially extensible to other hybrid protein-nanomaterials.
Atomic structural details of a protein grafted onto gold nanoparticles / Giuntini, Stefano; Cerofolini, Linda; Ravera, Enrico; Fragai, Marco; Luchinat, Claudio. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 7:(2017), pp. 17934-17934-6. [10.1038/s41598-017-18109-z]
Atomic structural details of a protein grafted onto gold nanoparticles
Giuntini, Stefano;Cerofolini, Linda;Ravera, Enrico;Fragai, Marco;Luchinat, Claudio
2017
Abstract
The development of a methodology for the structural characterization at atomic detail of proteins conjugated to nanoparticles would be a breakthrough in nanotechnology. Solution and solid-state NMR spectroscopies are currently used to investigate molecules and peptides grafted onto nanoparticles, but the strategies used so far fall short in the application to proteins, which represent a thrilling development in theranostics. We here demonstrate the feasibility of highly-resolved multidimensional heteronuclear spectra of a large protein assembly conjugated to PEGylated gold nanoparticles. The spectra have been obtained by direct proton detection under fast MAS and allow for both a fast fingerprinting for the assessment of the preservation of the native fold and for resonance assignment. We thus demonstrate that the structural characterization and the application of the structure-based methodologies to proteins bound to gold nanoparticles is feasible and potentially extensible to other hybrid protein-nanomaterials.File | Dimensione | Formato | |
---|---|---|---|
s41598-017-18109-z.pdf
accesso aperto
Tipologia:
Pdf editoriale (Version of record)
Licenza:
Open Access
Dimensione
1.63 MB
Formato
Adobe PDF
|
1.63 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.