We introduce a class of local likelihood circular density estimators, which includes the kernel density estimator as a special case. The idea lies in optimizing a spatially weighted version of the log-likelihood function, where the logarithm of the density is locally approximated by a periodic polynomial. The use of von Mises density functions as weights reduces the computational burden. Also, we propose closed-form estimators which could form the basis of counterparts in the multidimensional Euclidean setting. Simulation results and a real data case study are used to evaluate the performance and illustrate the results.

Circular local likelihood / Marco Di Marzio, ; Stefania, Fensore; Agnese, Panzera; Taylor, Charles C.. - In: TEST. - ISSN 1133-0686. - STAMPA. - 27:(2018), pp. 921-945. [10.1007/s11749-017-0576-9]

Circular local likelihood

Agnese Panzera;
2018

Abstract

We introduce a class of local likelihood circular density estimators, which includes the kernel density estimator as a special case. The idea lies in optimizing a spatially weighted version of the log-likelihood function, where the logarithm of the density is locally approximated by a periodic polynomial. The use of von Mises density functions as weights reduces the computational burden. Also, we propose closed-form estimators which could form the basis of counterparts in the multidimensional Euclidean setting. Simulation results and a real data case study are used to evaluate the performance and illustrate the results.
2018
27
921
945
Marco Di Marzio, ; Stefania, Fensore; Agnese, Panzera; Taylor, Charles C.
File in questo prodotto:
File Dimensione Formato  
Circular_Local_Likelihood.pdf

accesso aperto

Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1109438
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 2
social impact