In this paper we consider the inverse problem of determining, within an elastic isotropic thick plate modelled by the Reissner–Mindlin theory, the possible presence of an inclusion made of a different elastic material. Under some a priori assumptions on the inclusion, we deduce constructive upper and lower estimates of the area of the inclusion in terms of a scalar quantity related to the work developed in deforming the plate by applying simultaneously a couple field and a transverse force field at the boundary of the plate. The approach allows us to consider plates with a boundary of Lipschitz class.

Size estimates for fat inclusions in an isotropic Reissner-Mindlin plate / Antonino Morassi , Edi Rosset, Sergio Vessella. - In: INVERSE PROBLEMS. - ISSN 0266-5611. - STAMPA. - 34:(2018), pp. 1-26. [10.1088/1361-6420/aa9e55]

Size estimates for fat inclusions in an isotropic Reissner-Mindlin plate

Sergio Vessella
2018

Abstract

In this paper we consider the inverse problem of determining, within an elastic isotropic thick plate modelled by the Reissner–Mindlin theory, the possible presence of an inclusion made of a different elastic material. Under some a priori assumptions on the inclusion, we deduce constructive upper and lower estimates of the area of the inclusion in terms of a scalar quantity related to the work developed in deforming the plate by applying simultaneously a couple field and a transverse force field at the boundary of the plate. The approach allows us to consider plates with a boundary of Lipschitz class.
2018
34
1
26
Goal 17: Partnerships for the goals
Antonino Morassi , Edi Rosset, Sergio Vessella
File in questo prodotto:
File Dimensione Formato  
MRVInverse_Problems2018.pdf

Accesso chiuso

Descrizione: file pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF   Richiedi una copia
5-MRV-Mindlin-Inverse_Problems2018_vers-pubblica.pdf

accesso aperto

Descrizione: pdf
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 349.79 kB
Formato Adobe PDF
349.79 kB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1113119
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact