We consider the solution of $u_t-De^G_p u=0$ in a (not necessarily bounded) domain, satisfying $u=0$ initially and $u=1$ on the boundary at all times. Here, $De^G_p u$ is the {it game-theoretic} or {it normalized} $p$-laplacian. We derive new precise asymptotic formulas for short times, that generalize the work of S. R. S. Varadhan cite{Va} for large deviations and that of the second author and S. Sakaguchi cite{MS-AM} for the heat content of a ball touching the boundary. We also compute the short-time behavior of the $q$-mean of $u$ on such a ball. Applications to time-invariant level surfaces of $u$ are then derived.

Short-time behavior for game-theoretic p-caloric functions / Berti Diego; Magnanini Rolando. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 126:(2019), pp. 249-272. [10.1016/j.matpur.2018.06.020]

Short-time behavior for game-theoretic p-caloric functions

Berti Diego;Magnanini Rolando
2019

Abstract

We consider the solution of $u_t-De^G_p u=0$ in a (not necessarily bounded) domain, satisfying $u=0$ initially and $u=1$ on the boundary at all times. Here, $De^G_p u$ is the {it game-theoretic} or {it normalized} $p$-laplacian. We derive new precise asymptotic formulas for short times, that generalize the work of S. R. S. Varadhan cite{Va} for large deviations and that of the second author and S. Sakaguchi cite{MS-AM} for the heat content of a ball touching the boundary. We also compute the short-time behavior of the $q$-mean of $u$ on such a ball. Applications to time-invariant level surfaces of $u$ are then derived.
2019
126
249
272
Berti Diego; Magnanini Rolando
File in questo prodotto:
File Dimensione Formato  
BertiMagnaniniArx1709.10005v3.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Altro
Licenza: Tutti i diritti riservati
Dimensione 321.3 kB
Formato Adobe PDF
321.3 kB Adobe PDF
UnloadedOnlineReprint20180630.pdf

Open Access dal 01/06/2021

Descrizione: Articolo principale
Tipologia: Versione finale referata (Postprint, Accepted manuscript)
Licenza: Tutti i diritti riservati
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1114669
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact