We consider the solution of $u_t-De^G_p u=0$ in a (not necessarily bounded) domain, satisfying $u=0$ initially and $u=1$ on the boundary at all times. Here, $De^G_p u$ is the {it game-theoretic} or {it normalized} $p$-laplacian. We derive new precise asymptotic formulas for short times, that generalize the work of S. R. S. Varadhan cite{Va} for large deviations and that of the second author and S. Sakaguchi cite{MS-AM} for the heat content of a ball touching the boundary. We also compute the short-time behavior of the $q$-mean of $u$ on such a ball. Applications to time-invariant level surfaces of $u$ are then derived.
Short-time behavior for game-theoretic p-caloric functions / Berti Diego; Magnanini Rolando. - In: JOURNAL DE MATHÉMATIQUES PURES ET APPLIQUÉES. - ISSN 0021-7824. - STAMPA. - 126:(2019), pp. 249-272. [10.1016/j.matpur.2018.06.020]
Short-time behavior for game-theoretic p-caloric functions
Berti Diego;Magnanini Rolando
2019
Abstract
We consider the solution of $u_t-De^G_p u=0$ in a (not necessarily bounded) domain, satisfying $u=0$ initially and $u=1$ on the boundary at all times. Here, $De^G_p u$ is the {it game-theoretic} or {it normalized} $p$-laplacian. We derive new precise asymptotic formulas for short times, that generalize the work of S. R. S. Varadhan cite{Va} for large deviations and that of the second author and S. Sakaguchi cite{MS-AM} for the heat content of a ball touching the boundary. We also compute the short-time behavior of the $q$-mean of $u$ on such a ball. Applications to time-invariant level surfaces of $u$ are then derived.File | Dimensione | Formato | |
---|---|---|---|
BertiMagnaniniArx1709.10005v3.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Altro
Licenza:
Tutti i diritti riservati
Dimensione
321.3 kB
Formato
Adobe PDF
|
321.3 kB | Adobe PDF | |
UnloadedOnlineReprint20180630.pdf
Open Access dal 01/06/2021
Descrizione: Articolo principale
Tipologia:
Versione finale referata (Postprint, Accepted manuscript)
Licenza:
Tutti i diritti riservati
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF |
I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.