Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of "brownization". In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.

The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF / Scabia, Gaia; Barone, Ilaria; Mainardi, Marco; Ceccarini, Giovanni; Scali, Manuela; Buzzigoli, Emma; Dattilo, Alessia; Vitti, Paolo; Gastaldelli, Amalia; Santini, Ferruccio; Pizzorusso, Tommaso; Maffei, Lamberto; Maffei, Margherita. - In: SCIENTIFIC REPORTS. - ISSN 2045-2322. - ELETTRONICO. - 8:(2018), pp. 1781-1792. [10.1038/s41598-018-19886-x]

The antidepressant fluoxetine acts on energy balance and leptin sensitivity via BDNF

Pizzorusso, Tommaso
Methodology
;
2018

Abstract

Leptin and Brain Derived Neurotrophic Factor (BDNF) pathways are critical players in body weight homeostasis. Noninvasive treatments like environmental stimulation are able to increase response to leptin and induce BDNF expression in the brain. Emerging evidences point to the antidepressant selective serotonin reuptake inhibitor Fluoxetine (FLX) as a drug with effects similar to environmental stimulation. FLX is known to impact on body weight, with mechanisms yet to be elucidated. We herein asked whether FLX affects energy balance, the leptin system and BDNF function. Adult lean male mice chronically treated with FLX showed reduced weight gain, higher energy expenditure, increased sensitivity to acute leptin, increased hypothalamic BDNF expression, associated to changes in white adipose tissue expression typical of "brownization". In the Ntrk2tm1Ddg/J model, carrying a mutation in the BDNF receptor Tyrosine kinase B (TrkB), these effects are partially or totally reversed. Wild type obese mice treated with FLX showed reduced weight gain, increased energy output, and differently from untreated obese mice, a preserved acute response to leptin in terms of activation of the intracellular leptin transducer STAT3. In conclusion, FLX impacts on energy balance and induces leptin sensitivity and an intact TrkB function is required for these effects to take place.
2018
8
1781
1792
Scabia, Gaia; Barone, Ilaria; Mainardi, Marco; Ceccarini, Giovanni; Scali, Manuela; Buzzigoli, Emma; Dattilo, Alessia; Vitti, Paolo; Gastaldelli, Amalia; Santini, Ferruccio; Pizzorusso, Tommaso; Maffei, Lamberto; Maffei, Margherita
File in questo prodotto:
File Dimensione Formato  
Scabia sci rep.pdf

accesso aperto

Descrizione: articolo finale
Tipologia: Pdf editoriale (Version of record)
Licenza: Open Access
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF

I documenti in FLORE sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificatore per citare o creare un link a questa risorsa: https://hdl.handle.net/2158/1117016
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 24
social impact